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ABSTRACT

This thesis presents provability-based semantic interoperability (PBSI), a type of se-

mantic interoperability characterized by the ability to express complex relationships

between ontologies, and to share information even in situations where information

cannot be directly translated from one ontology to another. Relevant research in

interoperability is reviewed, including languages and ontologies that have been de-

signed to facilitate the exchange of information, as well as techniques for relating

ontologies and automating information exchange between them. Work in the Rens-

selaer Artificial Intelligence and Reasoning (RAIR) Laboratory during a number

of interoperability experiments is discussed, with particular respect to a new tech-

nique for enabling interoperability. Finally, Translation Graphs are introduced as

a new formal structure for automatically extracting axiomatic relationships that

govern the sharing of information between multiple ontologies, even in cases where

information cannot be directly translated. The structure of Translation Graphs is

described, and examples and a sample implementation is given.

viii



CHAPTER 1

Introduction

Herein I review several motivations for achieving semantic interoperability that have

arisen with the advent of pervasive computing and knowledge bases that store vast

amounts of useful information. I give a high-level overview of semantic interoper-

ability, a concept further developed in later sections. The work described herein lies

in the overlap of artificial intelligence (AI), knowledge engineering, and ontology

management.

1.1 The Need for Semantic Interoperability

1.1.1 In a Truly Useful Semantic Web

One of the promises of the information age is unfettered and uniform access

to myriad information sources through the Internet. Unfortunately, this promise is

yet unfulfilled except in movies and television:

A detective opens his laptop computer and, with but a few hurried keystrokes,

accesses ‘the database’. He scans police records, property deeds, criminal histories,

financial and employment background, genealogical records and more. These are

cross-referenced at the click of a mouse, or the press of a key, and the detective

speeds off in pursuit of his next target. What organization keeps and cross-references

all of that information?

A vacationer sits down at her desktop PC and opens a web browser to book

travel reservations, and moments later is comparing the cheapest five-star hotels

near the best beaches, and sorting them based on their proximity to inexpensive Thai

restaurants and historic train stations. Then, without leaving the website, she finds

a next train leaving from the local station; she can catch it if bags are packed and the

house left within the hour. What travel agency researched all of this and indexes it

so efficiently?

The answer in both cases is that no one can collect, store, organize, and

maintain such a large quantity of information. It would be wasteful to do so; the

1
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information is already available and organized and stored elsewhere and would so

quickly become out of date. It would be difficult to do so; local copies of the

information must be maintained and updated on a continuous basis.

There are now websites which advertise their ability to find personal informa-

tion and perform background checks, and sites which can find and compare travel

packages, though they fall short of Hollywood’s visions. The reason that these web-

sites are popular is because they have devoted a great deal of time and effort to

tackle very specific instances of a very difficult problem. They have collected in-

formation from a variety of sources, studied the just as numerous formats in which

it is represented, determined workable methods to organize and cross-reference this

information, and built an interface to access it.

Problems of information exchange are not new with the advent of pervasive

computing technology, but their presence is much more pronounced as engineers

and programmers try to tackle the problem with software. There is much more

information available now, but rarely is it in the form a particular application needs.

The early documents of the World Wide Web had only hyperlinks and basic

markup. The innovation of hyperlinking and the use of the Common Gateway

Interface (CGI) was enough to cause the explosion of the World Wide Web, devoid

of meaningful semantic content that could be easily and mechanically extracted.

To achieve a useful Semantic Web, information on the web must (1) be struc-

tured in a meaningful way and (2) information from different systems must be able

to be combined easily and meaningfully. (1) is being addressed as more and more

information is stored in databases, and by the adoption of regular markup languages

such as XML and XHTML. (2) is only happening partially. Service-oriented archi-

tectures are sharing information meaningfully, but need complete knowledge of the

ontologies employed by the systems involved. When systems with web presence can

share information without having to have extensive knowledge of their peers’ ontolo-

gies or schemata, web-based agents can be built that are capable of deep reasoning

and planning [40].

More and more emphasis is being placed on semantic markup, and extensible

markup languages like XML and XHTML allow authors to extend their markup
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languages with new tags corresponding to the terms in their ontologies.

This new and flexible mechanism for marking semantic knowledge is useful

and makes document and text retrieval easier and more effective than ever before,

but a caveat remains: a seeker must be aware and familiar with the author’s choice

of markup and ontology.

1.1.2 Intelligence Analysis

The defense and intelligence communities have, for some time, recognized the

need for semantic interoperability, and have sponsored research and development

of tools and languages to address this need. Some results of this research are the

DARPA Agent Markup Language [22], DAML, and DAML+OIL, for the markup

of information and for the description of ontologies. Though languages such as

KIF (§2.1.1.3) and Common Logic (§2.1.1.4) have been developed for describing

the relationships between ontologies and for the exchange of information between

ontologies, in 2005 the Disruptive Technology Office sponsored the Interoperable

Knowledge Representation for Intelligence Support (IKRIS) Workshop (§3.1), which

resulted in the IKRIS Knowledge Language (IKL), an extension to Common Logic

that addresses specific needs of the intelligence community.

Intelligence analysts (IAs) use many different software packages with different

featuresets, but interoperability with other packages has, until recently, usually been

an afterthought.

Programmers studying the process of intelligence analysis have written soft-

ware to aid analysts in many ways, including evidence collection, data visualization,

and collaboration with other analysts. These systems represent many different kinds

of information, and, understandably, do not employ the same knowledge represen-

tation formats. As a result, there are many good systems now available to IAs, but

there is great difficulty in using these tools together.

Slate (§3.1.1.1) and Solomon [13] are two applications under development at

the Rensselaer Artificial Intelligence and Reasoning (RAIR) Laboratory to aid IAs

in their day to day work. Slate offers IAs automated hypothesis generation, a

workspace for argument construction and verification, and tools for bias identifi-
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cation. Solomon is an intelligent question and answer (QA) system which aims

to produce rational, justified answers for conceptual, hypothetical, and open-ended

questions. Both Slate and Solomon have been designed and implemented taking

interoperability into account. The techniques described in this thesis have been

developed with RAIR Lab systems as testbeds, and these systems are the first to

integrate the lab’s interoperability technology.



CHAPTER 2

Preliminaries

In this chapter, I first summarize major developments in languages for information

representation, and then examine several large ontologies. With these in mind I

examine past approaches to enabling semantic interoperability. Finally, I define

provability-based semantic interoperability (PBSI) and argue why it is the only tech-

nique that can fully realize the potential of semantic interoperability.

2.1 Heritage of Information Exchange

2.1.1 Languages and Representations

A number of languages and representations have been developed to facilitate

the use and interchange of symbolic information. These range from formal logics to

graph notations and vary greatly with their intended applications. Several of the

most prominent representations and languages are discussed here.

2.1.1.1 Semantic Networks and Conceptual Graphs

The term semantic network refers to a number of structures (which are usu-

ally expressed graphically) that have been used for knowledge representation. Sowa

describes six commons types of semantic networks [72]. These include learning

networks, or neural networks, implicational networks, or Bayesian networks, and

executable networks, but those which are of the most interest to knowledge repre-

sentation are definitional networks and assertional networks.

The foundation of definitional networks is found in Aristotle’s Categories.

Therein, Aristotle describes his system for categorizing individual objects as well

as their classes [4]. Porphyry depicted Aristotle’s work graphically in the third cen-

tury; such depictions became known as an arbor porphyriana or Pophyrian tree.

With only a surprisingly small amount of modification, these definitional networks

have become one of the primary methods of describing object oriented programming

systems, database schemata, as well as the foundation for description logics.

5
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The first assertional networks were Peirce’s existential graphs, which graphi-

cally encoded sentences of first-order logic.

Conceptual graphs [71] combine some of the properties of Peirce’s existential

graphs with those of Shapiro’s propositional networks [68].

2.1.1.2 FOL

First-order logic was developed by Frege, Peirce and others to aid in the dis-

ambiguation of sentences expressed in natural languages, and to provide a sound

and valid mechanism for manipulating these sentences. First-order logic is appealing

as interchange language because of its well-defined structure, flexibility, and ease of

use. Though there are shortcomings in the expressiveness of first-order logic, much

of mathematics can and has been expressed in first-order logic and corresponding

theorems proved [67].

Though first-order logic is used as a singular term, properly speaking, there are

a set of first-order logics, or a family of first-order languages, each of which is defined

by a set of relation and function symbols. While academic texts tend to describe

a first-order logic using a particular syntax, it is understood that there are many

syntaxes one can choose from. E.g, ∀x Happy(x) and (forall (?x) (Happy ?x))

are simply syntactic variants of the same sentence. The term first-order logic, then,

can be understood as a description of the types of structures an actual language

must support, and the set of first-order languages as the set of actual languages

which do support them.

2.1.1.3 KIF

The Knowledge Interchange Format (KIF) [31] is one product of the ARPA

Knowledge Sharing Effort (KSE) [36]. The KSE also encouraged development of

the related tools, such as parsers, common knowledge bases, and the formalization

of certain common features of knowledge representation languages [56].

KIF is language with first-order semantics that was developed as an inter-

change format that would enable the reuse and sharing of information from many

different knowledge bases. It was intended to be an expressive logical language for

the description of knowledge bases and ontologies, including the SUO (§2.1.2.2).
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KIF’s design also took into consideration some of the lower-level interoperability

issues of its day, such as character encodings and file formats [76].

KIF included constructs specifically for ontology construction, such as forms

for defining functions and relations axiomatically in terms of other existing forms.

As an example of such definitions, in standard first-order logic, given the functions

FatherOf and PaternalGrandfatherOf , the latter can be defined by the axiom

∀x [∀y [(y = PaternalGrandfatherOf (x))↔ (y = FatherOf (FatherOf (x)))]] (2.1)

or, perhaps, more concisely,

∀x [PaternalGrandfatherOf (x) = FatherOf (FatherOf (x))] (2.2)

Experience has shown that human authors are prone to commit errors while

writing axiomatic definitions. For instance, consider the following example, which

aims to axiomatically relate a binary predicate LocatedAt and a unary function

LocationOf from events to locations:

∀l [∀e [(l = LocationOf (e))↔ (LocatedAt(e, l) ∧ Location(l)) ∧ Event(e))]]

This states that l is the location of e if and only if e is located at l, l is a location,

and e is an event.

However, mathematical and logical functions, such as LocationOf are under-

stood to map every element in the universe to some value. Then LocationOf must

map every element in the universe to some value. However, if it is not the case

that, for every element x in the universe, Event(x), then there is a contradiction. A

better formalization would be:

∀l [Location(l)→ ∀e [Event(e)→ (l = LocationOf (e))↔ LocatedAt(e, l)]]

This latter formalization is correct; for every event e, the location l of e is a location,

and it must be the case that e is located at l.

Prompted by the difficulty associated with writing correct defining axioms,
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(deffunction paternal-grandfather-of (?x) :=

(father-of (father-of ?x)))

Figure 2.1: paternal-grandfather-of specified with KIF’s deffunction.

(= paternal-grandfather-of

(lambda (?x)

(father-of (father-of ?x))))

Figure 2.2: The defining axiom for paternal-grandfather-of.

KIF’s designers included special syntactic forms for specifying such axioms. For

instance, Equation. 2.1’s representation in KIF is given in Figure 2.1. The definition

generates a defining axiom, shown in Figure 2.2.

2.1.1.4 Common Logic

After KIF and Conceptual Graphs (CG) had been adopted by various re-

searchers, a Common Logic (CL) Standardization group formed to formalize the

relation between KIF and Conceptual Graphs [37]. Common Logic standardized

the underlying semantics of the two representation formats and developed an ab-

stract syntax of which KIF and CG would be particular dialects.

CL’s development was concurrent to the explosion of the World Wide Web, and

the use of XML as an interchange format. Provisions for namespaces, and special

treatment of string datatypes and URIs were added to the language.The final ISO

draft [20] specified three concrete syntaxes (i.e., dialects) of Common Logic, viz.,

Common Logic Interchange Format (CLIF), Conceptual Graph Interchange Format

(CGIF), and eXtended Common Logic Markup (XCL).

2.1.2 Ontologies

In philosophy, ontology is the study of existence, of what is, the things that

are (not only physical things, but also concepts and classes, and so on), and of the

categorization or organization of these things. Ontology is used in computer science

with a similar, but distinct meaning. Within computer science, an ontology is a

model of data. Data here may refer to the data structures and objects within a
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program, or can refer to that which is stored in a knowledge representation system.

In a knowledge representation system based on first-order logic, a simple

family-based ontology might specify functions in the language such as MotherOf(x),

FatherOf(x), that the relations are Parent(x, y), and ChildOf(x, y). The ontology

would also specify constraints on the models of these relationships; e.g., that

Parent(x, y)→ (MotherOf(y) = x ∧ FatherOf(y) = x) ,

that MotherOf(x) 6= Fatherof(x), and so on.

The languages described so far have been designed for the interchange of knowl-

edge and information. There are two reasons that information cannot be shared

directly between knowledge representation systems:

1. The syntax of representation formats are not identical.

2. The ontologies to which the representation systems subscribe are not the same.

The first would be easily solved by syntactic manipulations (when the under-

lying formalisms of the systems are sufficiently similar) if the second were not the

case. There are a number of causes for the second:

1. Many applications to which knowledge representation is applied have a small

domain and it is more convenient to build a small, special-purpose ontology

for the application.

2. Even when the domains of ontologies overlap, many domains can be formalized

in many (possibly mutually exclusive) ways, and no one formalization is clearly

better than the other. No single ontology can contain all the formalizations

that a knowledge engineer might like to use.

3. Many domains can be formalized to various levels of granularity. What may be

an appropriate level of abstraction for one application may be far too abstract,

or far too in-depth for another.

Nonetheless, there have been some valiant efforts toward building ontologies

that capture enough information to be adopted by knowledge engineers. These
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ontologies, to various degrees, have been integrated, at least in part, with some

applications.

The difficulties of interoperability stem from the surface-level incompatibilities

of ontologies, and the promise of interoperability from the belief that the same

incompatibilities of ontologies are, in fact, reconcilable.

Several large ontologies which have been built to provide information for a large

number of systems are reviewed here. These ontologies are prominent examples of

the approach to knowledge representation that attempts to built an all-encompassing

ontology capable of encoding all the information that might arise.1

2.1.2.1 Cyc

The Cyc project is one of the long-standing players in symbolic knowledge-

based AI. Launched in 1984, the Cyc project’s aim was to build a knowledge base

that would contain all the commonsense information (or at least enough) that an

intelligent agent would need to behave reasonably in the real world. Properly speak-

ing, Cyc includes not only an ontology, but also specialized inference procedures,

and knowledge management tools [49].

The Cyc knowledge base is represented in the Cyc Representation Language,

CycL, a language with declarative first-order semantics, but a syntax which makes

some higher-level notions easy to express [48].

A comparison of the possible uses of Cyc’s KB and inference technologies gave

as the “better” and “best” possibilities for Cyc the following (taken verbatim from

[49, p. 34]):

• Better: Cyc’s KB is used by the next generation of AI research programs and

its size and breadth help make them more than theoretic exercises. No one

doing research in symbolic AI in 1999 wants to be without a copy of Cyc,

any more than today’s researchers want to be without EVAL and ASSOC.

Eventually, it empowers the first full-fledged natural language understanding

systems, non-brittle expert systems, and machine learning systems.

1 This is of course, a slight exaggeration. The ontologies presented are intended to encompass
a wide domain, and to provide a foundation on which more specialized ontologies can be built.
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• Best: Cyc, or something similar, serves as the foundation for the first true

artificial intelligent agent [sic]. Application programs routinely tie into it,

in effect letting it look over their shoulder. No one in the early twenty-first

century even considers buying a machine without common sense, any more

than anyone today even considers buying a PC that cannot run spreadsheets,

word processing, and networking software.

The “better” case is only partially realized; some research institutions do

make productive use of Cyc’s technology, and the the OpenCyc [1] project, an open

source version of the Cyc technology, includes the Cyc ontology and inference engine

(though the inference engine is not made open source).

In the “best” case scenario, “application programs routinely tie into it”. The

majority of application programs are designed without knowledge representation as

their primary purpose, and do not use CycL as a data representation. Though it

could not be reliably predicted in 1990, many application programs do use certain

formats of structured data representation; XML is the chief example today.

2.1.2.2 SUMO and SUO

An upper-level ontology aims to codify general-purpose terms, and to pro-

vide a foundation on top of which more specialized ontologies can be built [59].

An upper-level ontology will provide top-down descriptions, such as Physical and

Abstract, whereas a domain-specific ontology probably would eschew these types

of categorizations.

The Standard Upper Merged Ontology (SUMO) is an upper-level ontology

that was formed by combining a number of existing upper-level ontologies [61]. The

merge occurred in two phases. The first was a syntactic joining of the ontologies,

which rewrote all of the information in SUO-KIF, a version of KIF designed for the

Standard Upper Ontology. The second was a semantic merge in which researchers

examined the contents of the merged ontologies in great detail, searching for con-

tradictions, or ontological mismatches.

The Standard Upper Ontology working group [2, 57] is working toward build-

ing the Standard Upper Ontology (SUO) from which other ontologies can be built.
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SUMO has been proposed as a starting document to be taken as the SUO. Further

advantages to using SUMO as SUO come from the work that has already been done

to make use of SUMO, including SUMO to aid in natural language processing [62], in

processing controlled English [60], and mapping terms in WordNet to corresponding

terms in SUMO [58].

2.2 Relevant Past Approaches

I review a number of past approaches to the problem of semantic interoperabil-

ity, noting how these approaches fare with respect to the aforementioned desiderata;

in particular, whether: an approach is logically based, asymmetry of translation is

preserved, information in a foreign ontology can influence a query in a native ontol-

ogy even when the foreign information cannot be directly translated, and the quality

of available justifications is sufficiently high.

2.2.1 Schema Matching

When the subject domains and vocabularies of the ontologies to be related

are similar and the information represented within them is not too complex, schema

matching can be effective in translating information from one ontology to another.

With schema matching, corresponding terms from the ontologies are selected, and

information from one is recast in another. There are automated tools that aid in

schema matching [75]. Evaluating whether a schema matching is correct can be diffi-

cult, particularly if the matching has been generated (even partially) automatically.

A schema matching can be provided as primitive justification for results. It seems

difficult, with schema matchings, to capture semantic influence when information

translation is not possible.

2.2.2 Institutions and Schema Morphisms

The use of schema morphisms to map the sentences of one ontology to sen-

tences of another allows for more complex transformations between ontologies. This

approach can be used when ontologies are treated as institutions [35]. Within this

framework, it is possible to determine whether a schema morphism is correct [33],
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and to impose constraints that capture some of the asymmetry of translation and

semantic influence. Morphisms are not trivial to construct, but can capture rela-

tionships between ontologies using different logics [34]. Signature morphisms are

expressed with a different formalism and notation than the ontologies themselves,

however, and so the justification for a particular translation requires human inter-

vention or specialized reasoning outside of the ontologies themselves.

2.2.3 Axiomatic Translation

Simple syntactic manipulation of sentences does not afford the meaningful

translations that are desired. In fact, to answer queries expressed in a query on-

tology using information from various source ontologies often requires making use

of information from many source ontologies. Unfortunately, sentences in a source

ontology that have semantic consequences in a target ontology cannot always be

translated into the target ontology [24]. Semantic interoperability is still attainable,

however, by relating the ontologies logically, and evaluating queries with respect

to provability. Ontologies can be related axiomatically using lifting axioms [16] or

by merging the ontologies to be related and expressing bridging axioms in the new

merged ontology [25].

2.2.4 Summary

The techniques reviewed above have been used in real applications and have

successfully enabled varying levels of interoperability. No individual system, how-

ever, possesses all of the necessary qualities for top-notch semantic interoperability.

Building on these excellent foundations, we believe that our system of translation

graphs takes a step closer to the ideal.

2.3 What is Semantic Interoperability?

Many systems today achieve various levels of interoperability and information

exchange using ontology mapping [18] and schema matching [75]. These techniques

are useful and have achieved high levels of information sharing, but cannot capture

all the relationships that semantic interoperability requires.
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In the general tradition of logicist AI and cognitive science [8, 9, 10], and specif-

ically in the tradition of logic-based semantic interoperability [16, 25], we maintain

that semantic interoperability can be evaluated only with respect to provability-

based queries. This stems from the fact that ontology mapping and schema match-

ing cannot always capture asymmetry of translation [24], nor can information from a

source ontology always be translated into a corresponding form in a target ontology,

even if the information has semantic consequences in the target ontology.

Ontologies contain complex relationships among their own terms, and any

approach to semantic interoperability must be able to capture not only these, but

also the relationships between between multiple ontologies. A system which does

not use a sufficiently expressive formalism or language to describe these relationships

is inherently specialized and cannot be used for general applications.

Furthermore, consumers of the products of semantic interoperability should

have access to the justifications that bring about those products. Consumers should

have, then, in a schema-mapping approach, access to the mapping itself, in an

axiomatic approach, access to the axioms, and in a provability-based approach,

access to the proofs. Ideally, the proofs would be couched in a format that is readily

understood by non-specialists; e.g., proofs in natural language are far superior to

resolution-based proofs. Herein we describe a new brand of PBSI that meets the

desiderata just enumerated.



CHAPTER 3

Experiments

Through a number of interoperability experiments we have been exposed to the kinds

of information that today’s software systems must be able to share and exchange.

The amount of attention paid to knowledge representation by the systems varies

greatly; some are primarily knowledge-based, while others only incidentally make

use of knowledge representation techniques. Several experiments stand out for the

amount of information exchanged, the complexity of the information shared, or the

important abilities gained through interoperability.

3.1 IKRIS

Teams working in the ARDA-funded Novel Intelligence from Massive Data

(NIMD) program developed a number of software systems to aid IAs and other

members of the intelligence community (IC) in day-to-day work. Various projects

focused on collecting, filtering, and categorizing massive amounts of information

from many sources. Other projects aimed to help analysts organize and retrieve

information once it had become available. Yet other teams built systems to help the

analyst document their reasoning and arguments, and to generate reports.

While NIMD was initiated to address the sheer volume of information now

becoming available to IAs as well as the heterogeneity of these data, and though each

team had varying success in handling and processing some amount of information,

analysts to whom NIMD tools became available were left with a new problem. More

tools were available to analysts than any individual analyst could use, certain types

of tools were specialized for certain types of analysts, and the output of these tools

was, itself, heterogeneous; the results produced by one tool could not easily be used

in another tool.

In April of 2005, the Disruptive Technology Office, DTO (formerly ARDA),

sponsored the 18-month IKRIS workshop [54] which sought to enable interoperabil-

ity between not only NIMD tools but many knowledge representation and reasoning

15
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systems originating in multiple DTO programs.

The three specific goals of the workshop were given [54]:

Workshop Goal(s)

• Specify a knowledge interchange formalism that enables interoper-

ability of KR&R systems across DTO and IC programs;

• Evaluate the interchange formalism by testing whether it can be

used to effectively interchange the knowledge bases developed for

sample analysis tasks between the knowledge representation and

reasoning modules of prominent analyst support systems being de-

veloped in ongoing DTO programs;

• Actively seek opportunities to transfer IKRIS-derived specifications

and technologies to operational users.

The resulting interchange formalism described a framework of knowledge rep-

resentation systems employing their own ontologies, a dedicated intertheory repre-

sented in a new language (IKL) designed for information exchange, and for each

system, a pair of translators, one translating from the the particular system into the

intertheory, the other translating from the intertheory into the system.

The knowledge bases developed for sample tasks were based upon Case Studies

used at the Joint Military Intelligence College, and were encoded in the systems

participating (§3.1.1) in the IKRIS workshop.

The third goal is an ongoing task, but the realization of one such opportunity

is the continuing collaboration (§3.2) between Slate (§3.1.1.1) and Oculus’ GeoTime

(§3.2.1).

3.1.1 Participating Systems

Three primary knowledge representation and reasoning systems were involved

in the Capstone Demo. The particular systems involved were a function of the

workshop participants; many of those involved in the workshop were also associated

with research or development of software with significant knowledge representation
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Professional “Laic” Reasoners Formal Reasoners

Intelligence Analysts, item writers, . . . Mathematicians, logicians, technical
philosophers, . . .

Students of Intelligence Analysis, item
writing, . . . Students of math, logic, philosophy

Table 3.1: Slate’s Target Audience

or reasoning components. The systems first equipped with and able to employ

IKRIS technology are Slate, KANI, and Noöscape.

3.1.1.1 Slate

Slate [14] is a system under development at the RAIR Lab. Work on Slate

began in 2003 under ARDA’s NIMD program. Under NIMD, Slate was intended to

aid IAs throughout the analytic process, but with particular emphasis on the sub-

fields of hypothesis generation, argument construction and refinement, and report

generation.

Though Slate is built with IAs in mind, the IA is only one occupation whose

product is enhanced by Slate. In fact, the workflow of the IA is remarkably similar

to that of the mathematician or logician; indeed, any profession characterized by

analytic and creative reasoning can benefit from Slate. Slate’s target audience [15],

is given in Table 3.1.

Beginning in the Fall semester of 2005, Slate (in conjunction with NDL [5])

has been used by students in the Introduction to Logic course at RPI as an intel-

ligent assistant for designing, specifying, and validating or invalidating proofs and

arguments.

The processes that the IA and mathematician follow are very similar, and are

compared in Table 3.2.

IA tasked. Mathematician given problem.
Reads, gathers data, etc. Reads, gather info on prior work, etc.
Develops an argument-sketch in support
of an hypothesis or recommendation.

Develops a proof-sketch in support of a
theorem.

Fills in gaps and refines the argument. Fills in gaps in the sketch.
Issues a written report expressing and de-
fending the argument.

Releases an “informal” proof to the com-
munity.

Table 3.2: The Parallel Processes
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3.1.1.2 KANI

Knowledge Associates for Novel Intelligence (KANI) [28] is technology under

joint development by the Stanford Knowledge Systems AI Lab, IBM’s T.J. Watson

Research Center, and the Battelle Memorial Institute. KANI supports the analytic

process by helping analysts process and organize information, manual construction

of hypothesis and alternative models.

The associates are modular components to be part of the analytic process.

Great detail is not necessary here, but a brief summary of the individual associates

and their capabilities is included [29]:

1. Hypothesis Generation and Tracking Associate for knowledge represen-

tation and reasoning. This associate provides a framework in which hypotheses

can be constructed and challenged by alternative explanations.

2. Massive Data Extraction and Structuring Associate for processing and

extracting information from text documents. This associate, also known as

the Knowledge Extraction Associate, uses IBM Research’s Unstructured

Information Management Architecture (UIMA) [27] to extract information

from unstructured text documents according to domain ontologies, bringing

the information to the other associates in a structured encoding.

3. Background Knowledge Identification and Assembly Associate for

collecting and organizing background information pertaining to particular doc-

uments. This associate is able to process specially structured resources on the

WWW that contain domain-specific knowledge on various topics.

4. Information Interaction Associate to ease analyst interaction with the

other associates. This associate is also responsible for managing the graphical

workspace (Figure 3.1.1.2). Records of these visual workspaces over time, and

from multiple analysts are records of analyst work, intended to be used for

reflection and meta-analysis.

Though many of KANI’s actions are automatic, e.g., automated inferencing,

automated information extraction from text, KANI was designed so as to make
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Figure 3.1: An hypothesis in KANI. Relations and connections between
objects are depicted graphically, similarly to Conceptual Graphs.

the justifications for any automatic actions, particularly inferences, available to the

analyst. Treating the information from the text extraction process as a series of

inferences allows the this process to be described to analysts [26, 51].

3.1.1.3 Noöscape

Cycorp’s Noöscape [69] is designed to provide information retrieval and ques-

tion answering technology to IAs. Built upon Cyc’s knowledge base and inference

engine, Noöscape receives queries from analysts in natural English, and attempts to

answer the questions deductively. When a deductive answer can be constructed, the

corresponding proof, or argument structure, is rendered in English and given as a

response. Noöscape, using Cyc’s information provenance, is able to cite the sources

and authors of each piece of information in the argument.
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When Noöscape is unable to answer a query deductively, it attempts to re-

spond with an argument generated abductively. A partial argument for an answer

is generated, and Noöscape abduces the missing information. When the final argu-

ment is presented to the analyst, the abduced information is marked as such and

the analyst can choose to reject the abduced premises, mark them as accepted, or

launch a targeted investigation into them.

During the development of Noöscape, Cycorp was also working on the Ter-

rorist Knowledge BaseTM(TKB) [23], a comprehensive knowledge base containing

information about terrorism, terrorist groups, terrorists, etc. The TKB provides the

Cyc knowledge base with the information needed to answer difficult questions about

terrorism.

3.1.2 Interchange Formalism

The interchange formalism for the IKRIS program is an architecture in which a

number of software systems (knowledge representation and reasoning tools, informa-

tion gathering tools; henceforth end systems) exchange information by translating

information from the ontology of one system into the ontology of another. The

process of translation is governed by bridging axioms which, at the very least, place

limits on the outputs of a translator based on its input.

To achieve interoperability amongst a set of systems sufficiently expressive,

between any two systems i and j, there is a translation function Ti,j which takes as

input sentences in i and produces as output sentences in j. (We will also use the

notation Ti,j(Φ) where Φ is a set of formulae in i. This is defined as {Ti,j(φ) : φ ∈
Φ}.)

However, building a translator between each pair of the systems is not practi-

cal, and the number of translators needed grows quadratically with the number of

systems. This is discouraging, particularly when the goal is to increase the ease and

the speed, and to decrease the effort, with which a new system can be integrated into

the set of already-interoperating systems. However, by adding a single dedicated

ontology as an intertheory with which each of the component systems can interact,

the amount of work required to integrate a new system can be made constant; the
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Intertheory

Figure 3.2: Solid lines denote bidirectional translators. When no in-
tertheory is used, complete interoperability necessitates O(n2) translators.
When a common intertheory is used between n systems, the number of
translators needed is O(n).

Source
Slate Noöscape KANI

T
ar

ge
t Slate TI,S ◦ TS,I TI,S ◦ TN,I TI,S ◦ TK,I

Noöscape TI,N ◦ TS,I TI,N ◦ TN,I TI,N ◦ TK,I

KANI TI,K ◦ TS,I TI,K ◦ TN,I TI,K ◦ TK,I

Table 3.3: The compound translators produced by the composition of
translators between the intertheory and end systems.

number of translators required overall is O(n) [53]. This is depicted in Figure 3.2.

As a result, the decision was made to use a dedicated IKRIS Intertheory, and

build axiomatically governed translators that would translate from an end system to

the intertheory, and from the intertheory to the end system. In general, a translator

from system x to system y will be denoted Tx,y, and so the requirement is that for

each system σ in the workshop, the two translators Tσ,I and TI,σ would be built.

Because they are functions, translators can be composed. For every partici-

pating system in the workshop, two translators had been built, and so end-to-end

translators are simply composed translators. An end-to-end translator for systems

x and y is the composition TI,y ◦ Tx,I. Table 3.3 gives all the definitions of end to

end translators for the systems in the IKRIS workshop. To denote end systems, we

use the subscripts S, K, N, and I, to denote, respectively, Slate, KANI, Noöscape,

and the Intertheory.

The appearance of translators of the form Tx,x may at first be surprising, but
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they were critical in the evaluation of their component translators. Several impor-

tant constraints on translators can be expressed using these types of translators.

These and other constraints are discussed with the evaluations (§3.1.4).

3.1.3 IKL and the Intertheory

3.1.3.1 IKL

While languages such as KIF (§2.1.1.3) and Common Logic (§2.1.1.4) had

been developed to facilitate interoperability and knowledge exchange, these were

designed for systems working in more traditional academic and AI domains; more

flexibility and greater expressivity was desired. Building on the work that shaped

KIF and CL, the IKRIS Workshop produced IKL, the IKRIS Knowledge Language.

IKL is an extension to CL which adds the “ability to talk about the proposition

that its own sentences express” [39]. Though any first-order language theoretically

has this capability (through formalizing the language within itself), IKL adds this

capability at a useful and accessible level of abstraction, and in a way that facilitates

expressing the context of sentences. IKL would also serve as the language in which

the intertheory would be written.

3.1.3.2 The IKRIS Intertheory

Within the IKRIS Workshop, a number of working groups were formed, each

working on some facet of the workshop’s goals. The IKRIS Scenarios Working

Group, approached the task of developing an intertheory general and expressive

enough to capture the notions that software for the IC would need to represent, and

yet also so concise that application programmers would be able, and willing, to use

it [41].

The intertheory, then, is an ontology targeted at knowledge representation for

the intelligence community. The intertheory incorporated existing ontologies, such

as Process Specification Language (PSL), and [65, 66] and OWL-Time [43, 42], in-

troduced new terms for scenario descriptions, and related these terms axiomatically

(in IKL). Two examples, Figures 3.3 and 3.4 are reproduced from [41].

The scenarios groups also participated in the creation of the bridging axioms

that related the ontologies of the systems in IKRIS to the new intertheory. Most
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(forall (e f)

(if (fluentFor f e)

(and (psl:fluent f)

(State e))))

(forall (e)

(if (State e)

(exists (f)

(fluentFor f e))))

Figure 3.3: PSL’s fluent is related to the intertheory’s State and
FluentFor. PSL terms are prefixed with psl:.

(forall (f t t1)
(if (t:begins t1 t)

(iff (holdsFor f t)
(exists (o1)
(and (psl:activity_occurrence o1)

(psl:holds f o1)
(t:before/= (psl:end_of o1) t1)
(not (exists (o2)

(and (psl:activity_occurrence o2)
(psl:falsifies o2 f)
(t:before/= (psl:end_of o1)

(psl:end_of o2))
(forall (t2)
(if (t:ends t2 t)

(t:before (psl:end_of o2) t2)))))))))))

Figure 3.4: A complex axiom relating terms from PSL and OWL-Time,
which are prefixed with psl: and t:, respectively.

bridging axioms were rather concise, as exemplified by Figure 3.5, also directly from

[41].

3.1.4 Evaluation

The IKRIS program was evaluated with respect to several round trip informa-

tion exchange challenges, and in exchanging information pertinent to a Joint Mili-

tary Intelligence College Case Study. The evaluations aimed to determine whether

or not:

1. The ontologies were sufficiently expressive to capture the semantic constructs

of their peers’.
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(forall (x)

(iff (cyc:isa x cyc:StaticSituation)

(State x)))

(forall (x)

(iff (cyc:genls x cyc:StaticSituation)

(StateType x)))

Figure 3.5: Two bridging axioms relating the intertheory’s State and
StateType to terms in the Cyc KB. Cyc terms are prefixed with cyc:.

2. The translators could be built to satisfy Equations 3.1, 3.2, and 3.3.

3. There was a language expressive enough to capture the relationships between

the ontologies of the systems in the IKRIS program (and, it was hoped, other

ontologies used by applications used within the intelligence community).

Several evaluations, called round trips for their general structure, focused on

technical aspects of the translators, and determined whether or not the translators

met specific constraints on the quality of translation. One large evaluation, the

Capstone Demo, was less formal in nature, and demonstrated that the translators

and the interchange formalism could be implemented and applied to a real Case

Study in use by the Joint Military Intelligence College.

3.1.4.1 Round Trips

Given a system σ, the two translation functions Tσ,I and TI,σ are not required

to be inverses, and so the composed translation function Tσ,σ = TI,σ ◦ Tσ,I is not an

identity function on the sentences in σ. As a result, there are several constraints

that translation functions should satisfy.

Preservation of Deductive Implication. When some formula, ψ is deducible

from a set of formulae, Φ, deductive implication should be preserved when both Φ

and ψ are translated into the intertheory and back into σ. This is formally expressed

as

∀ψ∈σ,Φ⊆σ Φ ` ψ iff TI,σ ◦ Tσ,I(Φ) ` TI,σ ◦ Tσ,I(ψ) (3.1)
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Preservation of Semantic Domain and Co-Domain. Equation 3.1 does not

address the issue that Tσ,σ might perform a decrease the size of the projection into σ’s

ontology; that is, the co-domain of Tσ,σ might use a strict subset of the vocabulary of

σ’s ontology. (E.g., perhaps σ’s ontology describes integer and rational arithmetic,

but I describes only rational arithmetic, and TI ,σ generates formulae which use only

the vocabulary for the rationals.) Two constraints are necessary to guarantee that

the semantic domains and co-domains are preserved,

∀ψ∈σ,Φ⊆σ Φ ` ψ iff TI,σ ◦ Tσ,I(Φ) ` ψ (3.2)

∀ψ∈σ,Φ⊆σ Φ ` ψ iff Φ ` TI,σ ◦ Tσ,I(ψ) (3.3)

Equation 3.2 ensures that consequences of a knowledge base are maintained when

the knowledge base is translated. Equation 3.3 ensures that consequences of a

knowledge base are maintained when the consequences are translated.

The issue did not arise in the IKRIS workshop, but it is conceivable that in

dealing with certain types of systems, Equations 3.2 and 3.3 might be relaxed:

∀ψ∈σ,Φ⊆σ Φ ` ψ only if TI,σ ◦ Tσ,I(Φ) ` ψ (3.4)

∀ψ∈σ,Φ⊆σ Φ ` ψ only if Φ ` TI,σ ◦ Tσ,I(ψ). (3.5)

These relaxed forms would allow for the translation process to effectively add in-

formation. This may be an analogue to the manner in which human reasoners

seem to gain information through interchange, perhaps by recasting information or

reasoning about the representation schemes of their peers [12].

The first round trip illustrated the compatibility between Slate and the IKRIS

intertheory, and determines the quality of the two translators, TS,I and TI,S. The

structure of this round trip is illustrated in Figure 3.6. This round trip showed that

the translators satisfy Equation 3.1.

Experience with the output of the translators strongly suggested that they also

satisfied Equations 3.2 and 3.3. In general, proof that a translator, not provability-

based, satisfies these constraints would be infeasible for all but the simplest trans-

lators.
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Translators

1

2

3

4

Common Logic, an
ARDA standard

automatic
translation

Some hypothesis 
H can now be 
confirmed by 

Slate.

CL

KB KB

ΓCL

ΓsltΓslt

Figure 3.6: In the first round trip evaluation, knowledge from a knowl-
edge base S in Slate was automatically translated to Common Logic.
The resulting Common Logic knowledge base was automatically trans-
lated back into the Slate format. Slate successfully answered the queries
described by Equations 3.1, 3.2, and 3.3.

When working with multiple systems, however, the constraints of Equations

3.2 and 3.3 cannot be applied directly, for they reference entailment relationships

between formulae in the same system. As a result, Equations 3.2 and 3.3 become

∀ψ,Φ Φσ ` ψσ iff TI,ρ ◦ Tσ,I(Φσ) ` ψρ (3.6)

∀ψ,Φ Φσ ` ψσ iff Φρ ` TI,ρ ◦ Tσ,I(ψσ). (3.7)

where Φ is a set of propositions and ψ is a proposition, and subscripts on Φ and ψ

denote their encodings in the subscripted system. Such propositions might be the

result of encoding an English report in an end-system.

With an initial, but tentative, confirmation that the notion of axiomatic trans-

lation was feasible, other translation exercises could begin. These were variants of

the first round trip, but were, properly speaking, one way trips between systems in
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Translators

1

2

3

4

IKL, a DTO standard
automatic
translation

Some hypothesis H 
can now be 

confirmed by KANI.

IKL

KB KB

Γslt
Knowledge from 
Slate is sent out 
toward KANI.

ΓIKL

Γkani

Figure 3.7: The second round trip demonstration illustrated that knowl-
edge translation between systems using different ontologies is feasible.
KANI was able to use an automatically translated Slate knowledge base
to confirm an hypothesis.

the IKRIS program. One such exercise is illustrated in Figure 3.7.

After more translations between end systems, the translators were determined

suitable for more serious use, and work began (or rather, continued in the IKRIS

Capstone Demo).

3.1.4.2 IKRIS Capstone Demo

The IKRIS Workshop was sponsored because of the promise offered by in-

formation exchange. The interchange formalism described how, and provided a

framework in which, information could be exchanged. The Capstone Demo served

as an illustration of the benefits offered analysts by interoperability and information

exchange. The Capstone Demo tracks the progress of an analyst working on Chart

H, a portion of Hughes’ Case Study Four: Sign of the Crescent. The analyst is able

to solve Chart H when the knowledge bases of the participating systems can be

transparently shared, and the features of the systems can be applied to information

in the other systems. A high-level choreography of the demo is provided in Figure
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3.8.

The IKRIS Capstone Demo begins as an analyst using KANI has received

information regarding phone calls between five individuals, viz. Ramazi, Pakes,

Goba, Dhaliwal, and Galab, who are suspected of nefarious behavior. The phone

calls seem to refer to an event, henceforth E, a meeting of some sort, and the

analyst considers the most straightforward hypothesis, H1, that the phone calls do,

in fact, refer to a meeting of the four suspects. The analyst sends the hypothesis to

Noöscape asking whether a meeting between the suspects at the proposed time and

meeting place is actually plausible.

Noöscape considers the hypothesis but abduces, using some knowledge privy

to its own knowledge base as well as common sense reasoning, H2, that one of

the participants, Pakes, of the meeting actually will be ship-bound in an harbor

in Boston, lacking the paperwork and credentials to enter the country. Noöscape

constructs the argument explaining its reasoning and sends this argument back to

KANI, and also to Slate.

Slate examines Noöscape’s argument for H2, to look for any weak points or

other potential problems with the claim that Pakes cannot leave his vessel. Using

some of its own background knowledge, Slate presents a countermodel in which

Pakes has forged documents and so might be able to, albeit illegally, leave the boat.

Now, Noöscape’s argument contained abductive steps, and so Slate’s countermodel

does not conclusively strike down the possibility described by Noöscape, but does

give some cause for the analyst to reconsider, so Slate sends the countermodel to

the analyst using KANI.

The analyst using KANI examines Noöscape’s argument as well as the alterna-

tive countermodel produced by Slate, but decides that Slate’s countermodel, while

feasible, is probably implausible, and that Pakes probably cannot leave the ship.

The analysts then asks Noöscape for an entire hypothesis based on H2, that is, to

elaborate on the hypothetical that Pakes cannot leave the ship.

Noöscape, expanding on the H2 generates the hypothesis H4 that the event

discussed in the phone communications is not actually a meeting, as Pakes seems

to be a participant of E, and that the participants of events which are meetings are
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usually able to attend the meeting. Noöscape sends this argument to the analyst as

well as Slate.

Rather than generating another countermodel, Slate consults some information

in its knowledge base and realizes that not only (according to Noöscape’s argument)

can Pakes not attend the meeting, but that neither can Goba or Galab.

Attempting to flesh out the hypothesis, the analysts refines his hypothesis

and decides to focus some attention on the individual suspects. Noöscape happens

to know that Ramazi is actually an alias for a character named Ramzi who also

happens to be mentioned in KANI’s knowledge base.

The now enlightened analyst consults KANI concerning Ramzi and learns that

he maintains a warehouse about which little is known. Slate just happens to have on

hand the information that explosives were recently uncovered in Ramzi’s warehouse.

The now quite concerned analyst is coming to the realization that, with very

high likelihood, references to E are actually indirect talk about a planned bombing.

3.2 With Oculus’ GeoTime

As we began work in the DTO-sponsored Advanced Representation for Interac-

tive Visualization (ARIVA), now ASpace-X, program with the RAIR Lab’s Advanced

Knowledge Representation and Reasoning for Interactive Visualization (AKRRIV)

technology, and IKL’s fame grew in the R&D segment of the intelligence commu-

nity, we investigated the possibility of interoperability work with Oculus’ GeoTime

[63, 44, 17]. This section describes the IKL-based ongoing work to enable interop-

erability between Slate and GeoTime.

3.2.1 GeoTime

Oculus’s GeoTime system presents geospatial and temporal information with

an animated three-dimensional visualization. This method of visualization has cog-

nitive benefits that enables users to more quickly grasp trends in the presented data,

and to efficiently receive larger quantities of information with a smaller cognitive

workload. GeoTime’s visualizations aid analysts in uncovering behavioral patterns

of entities and and in predicting their future actions [45].
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Figure 3.8: The IKRIS Capstone Demo high level choreography.
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Figure 3.9: Display of information in GeoTime.

GeoTime has a relatively simple, but effective data model in which every

object is either an entity, location, event, or association. The entity type

corresponds, roughly, to actors. An association associates other kinds of objects;

e.g., an entity participating in an event would be connected to the event with an

association [47, 46].

3.2.2 Interoperability

Translators were built by researchers at Pacific Northwest National Laborato-

ries (PNNL) working on Visualization and Interoperable Knowledge Representation

Services (VIKRS), another project in ASpace-X. GeoTime’s native storage format,

OGT, is XML, specified by a custom DTD. The PNNL translators converted the

XML into “OGT-flavored IKL” which was then related to an intertheory designed

for this interoperability. Specifically, this intertheory was not the IKRIS Intertheory.

PNNL’s translators took XML of the type shown in Figure 3.10, and produced IKL

of the form shown in Figure 3.11.
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<Scenario>

<Target

name="John Doe"

id="1234"

location="3456"

display="Person"/>

<Location

name="Washington, DC"

id="3456"

display="City"/>

</Scenario>

Figure 3.10: GeoTime’s XML, OGT. For confidentiality reasons, actual
OGT is not shown. This captures the general structure of OGT without
using its vocabulary.

(ogt:type "1234" "Target")

(ogt:name "1234" "John Doe")

(ogt:location "1234" "3456")

(ogt:display "1234" "Person")

(ogt:type "3456" "Location")

(ogt:name "3456" "Washington, DC")

(ogt:display "3456" "City")

Figure 3.11: “OGT-flavored” IKL. Individual attributes of the XML ele-
ments have been specified using binary relations. Bridging axioms specify
how the IDs correspond to objects in the intertheory with particular at-
tributes.

Appendix A contains materials relating to the GeoTime interoperability effort.

In particular, axioms.ikl (§A.1) contains the axioms that governed the behavior of

the provability-based translators constructed at RPI that converted formulae from

the OGT-flavored IKL into the intertheory. hypothesis.ikl (§A.2) is an hypoth-

esis generated by Slate (Figure 3.12) working on a sample scenario imported from

GeoTime. preserved-information.ikl (§A.3) contains assertions about objects

with symbolic names in Slate which were identified by global unique identifiers in

GeoTime.
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Figure 3.12: A hypothesis is generated in Slate using the information
imported from GeoTime.
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Figure 3.13: GeoTime provided information from Hughes’ Case Study
Four: Sign of the Crescent, allowing a user of Slate to crack Chart E. The
cluster of propositions at the bottom center of the screen corresponds to
the imported GeoTime scenario.



CHAPTER 4

Translation Graphs

During the various interoperability experiments (§3), we refined the techniques with

which axiomatic interoperability was described and implemented.

In the IKRIS workshop (§3.1), bridging axioms expressed in IKL were the

primary enabler of interoperability. The bridging axioms, constructed manually by

workshop participants, related the end system ontologies to the intertheory. Trans-

lators were also built manually, but their behavior was governed by the bridging

axioms.

In the GeoTime work, we decided to use the same general approach, but

started to look for ways to generate bridging axioms, at least in part, automatically.

We realized that the ontologies of most systems, regardless of their underlying for-

malism (e.g., description logics, propositional calculus, first-order logic, etc.), can

be described as signatures in many-sorted logic. The relationships between these

can be described, and from the description, bridging axioms can be extracted auto-

matically.

This chapter describes translation graphs, their use in relating the ontologies

of multiple systems, and how bridging axioms and, in some cases, translators can

be extracted from them in an automated fashion. The contents of this chapter draw

heavily from a publication of this research, Provability-Based Semantic Interoper-

ability via Translation Graphs [74].

4.1 Formal Preliminaries

We treat ontologies as pairs of the form 〈Σ,Φ〉 where Σ is a signature in a

many-sorted logic, and Φ is a set of sentences in Σ. While many-sorted logic is not

employed by all ontology designers, it is appropriate for describing many ontological

constructs, including modalities, has an impressive history within computer science

and mathematics, and is reducible to standard first-order logic [50].

A sort is a domain, a universe, or a set of objects. There is a global set

35



36

of sorts, S∗. Generally, every signature will contain a sort corresponding to truth

values. In traditional logics, this sort is the set {true, false}, but this needn’t be

the case. Many-valued logics, for instance, will use a different sort for truth values.

A functor f is a function s0 × . . .× sn−1 → sn where s0, . . . , sn are elements of S∗.

〈[s0, . . . , sn−1] , sn〉 is the rank of f and denoted Rank(f).

A signature Σ is a tuple 〈σ, φ〉 where σ is a subset of S∗, called the sorts of Σ

and φ is a partial injective function from string-rank pairs to functors of the same

rank. The range of φ is the set of functors of Σ. There is a restriction on φ that for

every functor f among Σ’s functors, each sort in f ’s rank is one of Σ’s sorts.

A well-formed term of Σ has a particular interpretation which denotes the

application of corresponding functors to their arguments. E.g, if man(Socrates) is a

sentence of Σ1 and human(Sokrates) is a sentence of Σ2, but both Σ1 and Σ2 map

man and human, respectively, to the same functor f of rank 〈[s1] , s0〉, and Socrates

and Sokrates to the same functor g of rank 〈[] , s1〉, then the two sentences have the

same interpretation.

4.2 Ontology Modifications

A number of operations can be defined on signatures which correspond to

incremental modifications that might be performed on the signatures of ontologies.

Four primitive operations on signatures are defined by the following equations

AddSort(s, 〈σ, φ〉) = 〈σ ∪ {s}, φ〉 (4.1)

RemoveSort(s, 〈σ, φ〉) = 〈σ − {s}, φ〉 (4.2)

AddFunctor(w, f, 〈σ, φ〉) = 〈σ, φ ∪ {〈〈w,Rank(f)〉 , f〉}〉(4.3)

RemoveFunctor(w, r, 〈σ, φ ∪ {〈〈w, r〉 , f〉}〉) = 〈σ, φ〉 (4.4)

subject to several restrictions. RemoveSort(s, 〈σ, φ〉) is undefined if any of the func-

tors of 〈σ, φ〉 use s. AddFunctor(w, f, 〈σ, φ〉) is undefined if 〈w, arity(f)〉 is already

mapped to some functor. RemoveFunctor(w, r, 〈σ, φ〉) is undefined if φ does not

map 〈w, r〉 to any functor.

With the primitive methods, simple ontologies can be constructed that spec-
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ify only the vocabulary of a language. However, ontology consists not only in vo-

cabulary, but also in the meaning of the vocabulary and the relationships among

these terms. As a result, many knowledge representation languages include forms

analogous to Athena’s [6] define-symbol for defining symbols axiomatically. For

instance, MatGrandmotherOf(x), denoting the maternal grandmother of xm can be

defined in KIF using MotherOf(x) by (deffunction MatGrandmotherOf (x) :=

(MotherOf (MotherOf x))).

Both classical mathematicians and logicians along with modern knowledge

representation language designers have devoted a great amount of time to the subject

of the forms that can be used in axiomatic definitions. Some definitions may be

implemented as macro-like substitutions, while in other cases, the entire axiom

must remain available for subsequent reasoning [31, Ch. 11].

4.3 Translation Graphs

We implemented a prototype of the structures and modifications described in

the previous section, thereby providing a framework in which to perform natural

ontology-related activities, such as ontology construction and mapping. Ontology

construction becomes easy: Starting from an empty signature (i.e., a signature with

no sorts or functors), existing ontologies can be recreated by adding the ontology’s

sorts, and then relations and function symbols. These reconstructed ontologies can

then be related by adding the functors of one ontology to another with axiomatic

definitions. Displaying the process graphically inspired translation graphs.

After initial experiments demonstrated the feasibility of this approach, we

realized that the process could be used to describe the interoperability in the IKRIS

workshop and experiments in interoperability between robust software systems, such

as Oculus’ GeoTime (§3.2), SUNY Albany’s HITIQA [73], Attempto Controlled

English [30, 11], and the RAIR Lab’s own Slate (§3.1.1.1) and Solomon [13].

A translation graph is a directed graph whose vertices are signatures, and

whose edges denote axiomatic relationships between the signatures of the graph. If

signatures Σi and Σj are vertices of some translation graph and the edge 〈Σi,Σj〉 is

in the graph, there is information associated with it that describes how information
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represented in an ontology employing Σi can be used in an ontology employing Σj.

This property is transitive, and so a Σu,Σv path contains information for using

information under Σu in Σv.

4.4 An Example

We present an example to show that translation graphs can be used to enable

interoperability between ontologies whose subject domains intersect but are not

identical, that queries can be answered with information from multiple ontologies,

and that the information used to answer the query is not representable in all of the

ontologies presented. (For the sake of readability and conciseness, we will ignore

issues such as namespaces and the use of fundamental datatypes such as strings and

numbers.)

We consider four separate software systems operating with four distinct on-

tologies amongst which information will be shared.

The first two systems are social networking programs which represent informa-

tion about phone calls. The first system, A, keeps records of the form Called(x, y) to

denote that x called y, where x and y are names of individuals. The second system,

B, uses CalledBy(x, y) to denote that x was called by y, where x and y are names of

individuals. A and B can be related with the primitive operations described earlier;

the result is shown in Figure 4.1. The function Called is added to B with an ax-

iomatic definition, yielding an intermediate signature. CalledBy is removed from the

intermediate signature, resulting in A. Tracing the path between the ontologies and

collecting axioms along the way gives all the information needed to use information

from one ontology in the other.

The axiomatic definition between A and B is a biconditional and could be

optimized as a rewriting rule. That is, assertions in one ontology could be rewritten

in terms of the other’s vocabulary. The translation here is symmetric, and could be

handled by schema-matching tools.

Next, we introduce a cellular phone company database C which has information

about phone calls made on the cellular network, and keeps records of the form

Phoned(n1, n2), where n1 and n2 are phone numbers between which calls have been
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B

Sorts: Person Functions: CalledBy

Sorts: Person

Functions: CalledBy, Called

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)))

A

Sorts: Person Functions: Called

(remove-functor CalledBy)

Figure 4.1: Ontologies A and B are related.

placed. Figure 4.2 illustrates the relationship between C and A.

While no individual link in Figure 4.2 is particularly complicated, the addition

of the axiomatically defined Owner deserves special note. Owner(x) denotes the

person who owns a phone number x. Owner is present in neither A nor C, but its use

in relating them does seem clear: Owner functions as a sort of semantic placeholder.

Without an interpretation of Owner, information exchange would not be possible;

there would be information missing. However, the use of translation graphs has

allowed us to capture what is needed to exchange information meaningfully.

Another possibility is that Owner may stand for a non-logical function. For

instance, in the process of exchanging information, occurrences of Owner(x) might be

replaced with the results of a database lookup or some procedural transformation

(e.g., if phone numbers were a function of the characters comprising a person’s

name).

In this example, however, we integrate the database of a reverse phone number

lookup system, D. In this case, the information that D provides is not phone records,

but pairs of phone numbers and their owners’ names. D records that Owns(x, y)

when x, a person, owns the phone number y. The integration, shown in Figure 4.3,

is straightforward.
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C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Figure 4.2: Phone company C is related to A.

Having connected A with B, and then A, C, and D, enough work has been

done to yield the translation graph shown in Figure 4.4. The graph can be used to

describe the relationships between the ontologies, and the axiomatic relationships

needed to answer queries about the contents of the four knowledge bases can be

automatically extracted from it.

Remarks. In such a small example, the overall structure of the translation was

not given much thought. In real systems, however, engineers must consider the

implications of their translation structures. For example, in some situations, an

interlingua and intertheory may be preferred, or in some cases it may not be appro-

priate or feasible [7, 53]. However, we present translation graphs without expressing

preference among these possible architectures; translation graphs general enough to

be applied in an architecture-agnostic manner.
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C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Figure 4.3: The information in D is made available to A and C.

With the translation graph as given, it would be possible to run automated

reasoners directly on the union of the knowledge bases and all the axioms extracted

from the edges of the graph. Of course, intractability and undecidability make this

a tricky technique, but there is an interesting parallel to Green’s method. Green’s

method extracts plans that achieve particular goals from proofs that such plans exist

[32]; with the naive method above, interoperability and translation are achieved as

a side effect of automated theorem proving.
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C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Sorts: Person Functions: CalledBy, Called

(remove-functor CalledBy)

B

Sorts: Person Functions: CalledBy

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)

Figure 4.4: The final translation graph of the relationships between the
systems.



CHAPTER 5

Future Work

Through the various experiments documented here, strides have been made in ma-

chine interoperability. Inspired by the results of the IKRIS workshop and by the

ongoing exemplary work on and demonstrations of the interoperability work be-

tween GeoTime and Slate, systems in the intelligence community are investigating

what they can do to become ‘IKL-compliant’. With each new attempt at inter-

operability we take a meaningful step toward the seamless flow of information our

information-driven society needs. Through continued research, we are refining the

use of translation graphs for PBSI and discovering applications of semantic interop-

erability. There are a number of particular areas in which further research promises

great benefits or would promote the adoption of PBSI.

5.1 Automaticity

The ultimate dream of this sort of R&D is full automaticity. Following a

divide and conquer approach, translation graphs allow for the automatic production

of bridging axioms. So, if translation graphs could be automatically produced,

the dream would be reality. We are investigating the application of automatic

programming [64] toward this goal. More immediately, some of the approaches in

automated schema matching could be applied.

5.2 Sophisticated Ontology Representation

We built translation graphs with the signatures of many-sorted logic as nodes,

for flexibility and convenience of expression, though such graphs lack some desirable

features such as subsorting, sort hierarchies, and a standard language for describing

the signatures themselves. There has been a great deal of research in what kind of

reasoning [3] must be performed over ontologies [70], and there are many languages,

such as RDF, DAML, and OWL, designed for the purpose of ontology description.

43
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Building translation graphs from ontologies represented in these languages would

allow us to work with many ontologies already constructed and in use today.

5.3 Categorizing Axiomatic Definitions

From certain types of axiomatic definitions we can extract rewriting rules

(inline translations); indeed, to make the translation graph approach scale well,

optimizations such as inline translations are almost certainly necessary. We believe

more sophisticated rewriting rules and other types of procedures can be developed

by examining paths in a translation graph, and will be pursuing this line of work.

5.4 Database Interoperability

Databases are one of the most common sources of information used on the

web today. Massive, centralized, databases are uncommon, and so there is a great

concern for enabling interoperability between databases and for the productive use

of information from multiple databases.

This concern has spurred work enabling Slate to launch database queries using

SQL. Figures 5.1 and 5.2 illustrate arguments in Slate being supported or denied by

information in a relational database. Currently, the queries that Slate can launch

are based on simple translations from first-order logical formulae into SQL queries,

but we hope to enable Slate to generate queries much more intelligently. Used in

this way, Slate will serve as a powerful tool for using information from multiple

databases in semantically meaningful ways.
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Figure 5.1: Information from a relational database is retrieved by an
SQL query automatically generated by Slate, and is used to support or
deny arguments in the workspace.
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Figure 5.2: The argument in the lower right hand corner of the Slate
workspace is supported by information from a relational database.



APPENDIX A

Slate ⇔ GeoTime Materials

The materials in this appendix are products of the interoperability effort between the

Slate and GeoTime teams. axioms.ikl contains the axioms that related the OGT

vocabulary to Slate’s. hypothesis.ikl is a simple hypothesis that Slate generated.

preserved-information.ikl records the equalities between the GUID strings used

in the IKL produced form GeoTime output and the symbolic names for the same

entities in Slate.

A.1 axioms.ikl

(cl:comment

’Bridging axioms to bridge between IKL representation of data from

Oculus’ GeoTime and a corresponding representation in Slate.

Currently, much of the information in the GeoTime IKL is discarded.

Some of this is reasonable [e.g., Slate has no corresponding mechanisms

for viewStyles and other display information], but other information

is more likely to be included later, such as information about time.

The Slate representation in many-sorted-logic is as follows:

Domains:

* elementary events

* compound events

* places

* targets

Functions:

* location-of : event -> place

* participates-in : target x event -> boolean

* compound-event-part : compound event x elementary event -> boolean

In the intermediate representation, there are sort predicates for each

of the domains, and objects are categorized into domains based on the

available information in the GeoTime IKL file.

When the types of objects have been inferred, the values of

participates-in, location-of, and compound-event-part can be inferred

from the remaining information in the GeoTime IKL.

The equality or distinctness of objects in the GeoTime IKL is based

on the distinctness (or equality) of the actual names in the text, as

the names are UUIDs. Nonetheless, this distinctness is not expressible

using axioms, and must be handled in the actual processing of the file.

As such, parties must take care to preserve the identity of objects

and UUIDs when exchanging information.

Joshua Taylor - tayloj@rpi.edu

Andrew Shilliday - shilla@rpi.edu

Selmer Bringsjord - selmer@rpi.edu
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February 27, 2007’)

(cl:comment

’Type Definitions’

(and

(cl:comment

’Elementary Events’

(forall (e)

(iff

(event e)

(and (rdf:type e gt:event)

(cs:class e ’com.oculus.cs.geotime.model.event.EventElementary’)))))

(cl:comment

’Compound Events’

(forall (e)

(iff

(compound-event e)

(and (rdf:type e gt:event)

(cs:class e ’com.oculus.cs.geotime.model.event.EventCompound’)))))

(cl:comment

’Places’

(forall (p)

(iff

(place p)

(and (rdf:type p gt:place)

(cs:class p ’com.oculus.cs.geotime.model.place.Place’)))))

(cl:comment

’Associations’

(forall (a)

(iff

(association a)

(and (rdf:type a cs:association)

(cs:class a ’com.oculus.cs.model.general.association.StandardAssociation’)))))

(cl:comment

’Targets’

(forall (t)

(iff

(target t)

(and (rdf:type t gt:target)

(cs:class t ’com.oculus.cs.geotime.model.target.Target’)))))))

(cl:comment

’Location Axiom’

(forall (p)

(if (place p)

(forall (e)

(if (event e)

(iff

(= p (location-of e))

(exists (a)

(and (association a)

(or (and (cs:parent a e)

(cs:child a p))

(and (cs:parent a p)

(cs:child a e)))))))))))

(cl:comment

’Participant Axiom’

(forall (t)

(if (target t)

(forall (e)

(if (event e)

(iff

(participates-in t e)

(exists (a)

(and (association a)
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(or (and (cs:parent a e)

(cs:child a t))

(and (cs:parent a t)

(cs:child a e)))))))))))

(cl:comment

’Compound Event’

(forall (e)

(if (event e)

(forall (c)

(if (compound-event c)

(iff

(compound-event-part c e)

(exists (a)

(and (association a)

(or (and (cs:parent a e)

(cs:child a c))

(and (cs:parent a c)

(cs:child a e)))))))))))

A.2 hypothesis.ikl

(cl:comment
’The generated hypothesis: There will be an event in which Mark Davis, alias

Hamid Alwan, will participate, and the event will happen at the New York
Stock Exchange. This event is a bombing. This hypothesis is generated from
knowledge that Hamid Alwan has access to the NYSE, that he was trained in the
usage of explosives in Sudan and Afghanistan, and that he is wanted in
Canada.’
(exists ("Bombing Event")
(and (event "Bombing Event")

(participates-in "Bombing Event" "Mark Davis/Hamid Alwan")
(= "NYSE" (location-of "Bombing Event")))))

A.3 preserved-information.ikl

(cl:comment ’UUID and object equality.’
(and
(= "gt:ba5bdb:1000a7acfc1:-7fa9" "Bad address")
(= "gt:1b284a4:f83ff94049:-8000" "Select Foods, Springfield")
(= "gt:ba5bdb:1000a7acfc1:-7fa3" "Listed Address")
(= "gt:ba5bdb:1000a7acfc1:-7fa6" "employee")
(= "gt:ba5bdb:1000a7acfc1:-7f58" "call from Select Foods")
(= "gt:ba5bdb:1000a7acfc1:-7f9d" "Employee")
(= "gt:16b7e0e:f85ab20662:-7ffd" "&quot;pick up carpet apr 25&quot;")
(= "gt:163d208:f84a7da4ca:-7fd1" "Manager Missing")
(= "gt:16b7e0e:f85ab20662:-7ffe" "&quot;pick up carpet apr 25&quot;1")
(= "gt:163d208:f84a7da4ca:-7fd0" "Manager")
(= "gt:163d208:f84a7da4ca:-7fd3" "Carpet Shop")
(= "gt:163d208:f84a7da4ca:-7fd7" "Alwan Born")
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(= "gt:ba5bdb:1000a7acfc1:-7f49" "call")
(= "gt:16b7e0e:f85ab20662:-7ff2" "call1")
(= "gt:16b7e0e:f85ab20662:-7ff1" "call2")
(= "gt:16b7e0e:f85ab20662:-7ff8" "phone")
(= "gt:16b7e0e:f85ab20662:-7ff9" "718-352-8479")
(= "gt:ba5bdb:1000a7acfc1:-7f91" "Transfer $8500")
(= "gt:163d208:f84a7da4ca:-7fe1" "Wanted in Canada")
(= "gt:163d208:f84a7da4ca:-7fe3" "SAUDI ARABIA")
(= "gt:163d208:f84a7da4ca:-7fe5" "SUDAN")
(= "gt:163d208:f84a7da4ca:-7fe7" "AFGHANISTAN")
(= "gt:1b57890:f845223c39:-7ff8" "Empire State")
(= "gt:163d208:f84a7da4ca:-7fe9" "CANADA")
(= "gt:163d208:f84a7da4ca:-7fdb" "Explosives Training")
(= "gt:1b57890:f845223c39:-8000" "cleared")
(= "gt:1b57890:f845223c39:-7ff4" "Empire State Vending")
(= "gt:163d208:f84a7da4ca:-7fdf" "Explosives training")
(= "gt:1b57890:f845223c39:-7ff2" "Employee1")
(= "gt:1b57890:f845223c39:-7ff3" "Employee2")
(= "gt:656758:f844f9e0bd:-8000" "NYSE")
(= "gt:656758:f844f9e0bd:-7ff9" "Access to NYSE")
(= "gt:656758:f844f9e0bd:-7ff3" "City Computers")
(= "gt:656758:f844f9e0bd:-7ff1" "employee1")
(= "gt:656758:f844f9e0bd:-7ff0" "employee2")
(= "gt:656758:f844f9e0bd:-7ff7" "Bad address1")
(= "gt:656758:f844f9e0bd:-7ff6" "Bad address2")
(= "gt:1fa8d3b:f84bc97d7c:-7ffb" "Fought in Afghan")
(= "gt:ba5bdb:1000a7acfc1:-7f82" "Manager1")
(= "gt:16b7e0e:f85ab20662:-7fdd" "call3")
(= "gt:16b7e0e:f85ab20662:-7fdc" "call4")
(= "gt:656758:f844f9e0bd:-7ffc" "Mark Davis/Hamid Alwan")
(= "gt:656758:f844f9e0bd:-7ffb" "1631 Webster Ave")
(= "gt:1b57890:f845223c39:-7ffd" "Address")
(= "gt:1b57890:f845223c39:-7ffe" "City Computer Corp")
(= "gt:1b57890:f845223c39:-7ffb" "Bagwant Dhaliwal/Sahim Albakri")
(= "gt:1b57890:f845223c39:-7ffa" "Address1")
(= "gt:eb9f58:f84554401e:-8000" "Hani al Hallak")
(= "gt:eb9f58:f84554401e:-7ffc" "Transfer $85001")
(= "gt:eb9f58:f84554401e:-7fff" "N. Bergen")
(= "gt:eb9f58:f84554401e:-7ffd" "Transfer $85002")
(= "gt:ba5bdb:1000a7acfc1:-7f5e" "&quot;pick up carpet apr 25&quot;2")
(= "gt:656758:f844f9e0bd:-7fed" "2462 Myrtle Ave, Queens")
(= "gt:656758:f844f9e0bd:-7fd2" "Address2")
(= "gt:656758:f844f9e0bd:-7fd1" "Address3")
(= "gt:163d208:f84a7da4ca:-7fcd" "C-4 found")))



APPENDIX B

Code

B.1 signatures.lisp

signatures.lisp contains a Common Lisp implementation of the signature

and translation graph structures and algorithms described in Chapter 4.

;;; You can use ASDF to load FSet, and FSet is ASDF-installable. If
;;; you don’t use ASDF, comment out the follwing line and be sure to
;;; load FSet somehow before using this code.

#-:fset-ext-strings (asdf:operate ’asdf:load-op :fset)

(defpackage #:translation-graphs
(:documentation
"The translation graphs package provides an implementation of the

translation graphs described in \"Provability-Based Semantic Interoperability
via Translation Graphs\" Joshua Taylor, Andrew Shilliday, and Selmer
Bringsjord. ONISW 2007. It depends on FSet library of functional
set-theoretic structures (which is available through asdf-install, and from
http://common-lisp.net/project/fset/).

There are two interesting things that this code will allow one to do. The
first is the generation of translation graph images. When translation graphs
are built incrementally (such as in the examples), the resulting translation
graph can be printed in GraphViz’s dot language. GraphViz is freely
available (http://www.graphviz.org/) and images in a variety of formats can be
generated from dot files. These diagrams can be helpful for documenting the
relationships between ontologies.

The second interesting thing is the automatic extraction of bridging axioms
from a translation graph. The idea here is that given access to information in
a number ontologies, it might be possible to translation information from one
ontology into another. This translation can be implemented procedurally, but
goverened by axioms extracted from a translation graph. Sometimes, translation
from one ontology to another is impossible, but the bridging axioms extracted
from a translation graph can still make some of the information from one
ontology useful to another ontology.")
(:nicknames #:tg)
(:shadowing-import-from #:fset
#:set #:map #:with #:map-default :empty-map #:empty-set #:do-set
#:do-map #:lookup #:range #:domain :convert #:less #:compare #:@)
(:use :cl))

(in-package #:translation-graphs)

51



52

;;; Utilities

(defmacro with-gensyms ((&rest syms) &body body)
"Bind each of syms to a gensym’d symbol, and evaluation body in this

context. with-gensyms is designed for building macros."
‘(let (,@(mapcar #’(lambda (sym)

(list sym ‘’,(gensym)))
syms))
,@body))

(defmacro mvlet* (&whole whole bindings &body body)
"Mvlet* combines the functionality of multiple-value-bind and let*. Each

binding should be either a symbol, or a list with two elements. If the
binding is a symbol, then it is bound to NIL by let (e.g., (let (x) ...)). If
it is a list, then if the car of the binding is a symbol, it is bound using
let to the second value of the list (e.g., (let ((x y)) ...)). If the car of
the binding is a list, then it is a list of bindings used with
multiple-value-bind (e.g., (multiple-value-bind (x y z) <values-form>
<body>))."
(cond

((null bindings)
‘(progn ,@body))
((not (listp bindings))
(error "Expected a list of bindings in ~A, but got ~A" whole bindings))
(t (destructuring-bind (binding &rest bindings) bindings

(if (symbolp binding)
‘(let (,binding)

(mvlet* ,bindings
,@body))

(destructuring-bind (e v) binding
(if (listp e)

‘(multiple-value-bind ,e ,v
(mvlet* ,bindings

,@body))
‘(let ((,e ,v))

(mvlet* ,bindings
,@body)))))))))

(defun in-map? (map key)
"Is key a key in the map? Convenient mechanism for checking."
(multiple-value-bind (value found?) (lookup map key)
(values found? value)))

(defun mapped-to? (map value)
"Does some key map to the value? Convenient mechanism for checking."
(lookup (range map) value))

;;; Signatures

(defstruct signature
"A signature is a tuple <s,f> where s is a mapping of sort names to sorts,
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and f is a mapping of functor names to functors."
(sorts (empty-map))
(functors (empty-map)))

(defmethod compare ((s1 signature) (s2 signature))
"Signatures are composed of two maps. Their specialized compare compares

one of the maps. If that comparison is not :equal, it is returned. Otherwise,
the other map is compared, and that comparison is returned."
(let ((sorts-compare (compare (signature-sorts s1)

(signature-sorts s2))))
(if (not (eq :equal sorts-compare))

sorts-compare
(compare (signature-functors s1)
(signature-functors s2)))))

(defstruct functor
"Functors are indentified by object equality. Argument-types is a list of

sorts objects, and value-type is a sort object."
(argument-types ())
(value-type NIL))

(defun add-sort (signature sort-name &optional (sort (gensym) sort-p))
"Return a new signature like signature with a mapping from sort-name to

sort. It is an error is sort-name already names a sort in the signature, or if
the sort is already named in the signature (this can only happen if sort is
provided)."
(if (in-map? (signature-sorts signature) sort-name)

(error "~A already names a sort in ~A." sort-name signature)
(multiple-value-bind (mapped? name)

(mapped-to? (signature-sorts signature) sort)
(if mapped?

(error "~A is already named ~A in ~A." sort name signature)
(make-signature
:sorts (with (signature-sorts signature) sort-name sort)
:functors (signature-functors signature))))))

(defun remove-sort (signature sort-name)
"Return a new signature like signature where sort-name maps does not map to

any sort."
(if (not (in-map? (signature-sorts signature) sort-name))

signature
(make-signature
:sorts (less (signature-sorts signature) sort-name)
:functors (signature-functors signature))))

(defun functor-sorts-ok? (functor signature)
"Do all the sorts used in the functor appear in the signature?"
(let ((sorts (range (signature-sorts signature))))

(flet ((sort-mapped? (sort)
(lookup sorts sort)))
(and (sort-mapped? (functor-value-type functor))

(every #’sort-mapped? (functor-argument-types functor))))))
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(defun add-functor (signature functor-name functor)
"Return a new signature like signature with a mapping from functor-name to

functor. It is an error if functor-name already names a functor in signature,
or if functor is already named in signature."
(cond
((in-map? (signature-functors signature) functor-name)
(error "~A already names a functor in ~A." functor-name signature))
((not (functor-sorts-ok? functor signature))
(error "~A uses sorts not in ~A." functor signature))
(t (multiple-value-bind (mapped? name)

(mapped-to? (signature-functors signature) functor)
(if mapped?

(error "~A is already named ~A in ~A." functor name signature)
(make-signature
:sorts (signature-sorts signature)
:functors (with (signature-functors signature)
functor-name functor)))))))

(defun add-new-functor (signature functor-name value-type &rest argument-types)
"Return a new signature like signature with a mapping from functor-name to a

new functor. value-type and argument-type should be names of sorts in
signature."
(flet ((get-sort (name)
(multiple-value-bind (sort found?)

(lookup (signature-sorts signature) name)
(if found?

sort
(error "~A does not denote a sort in ~A." name signature)))))

(add-functor
signature
functor-name
(make-functor
:argument-types (mapcar #’get-sort argument-types)
:value-type (get-sort value-type)))))

(defun remove-functor (signature functor-name)
"Return a new signature like signature in which functor-name does not map to

any functor."
(if (not (in-map? (signature-functors signature) functor-name))

signature
(make-signature
:sorts (signature-sorts signature)
:functors (less (signature-functors signature) functor-name))))

;;; Translation Graphs

(defstruct edge
"An edge is directed, and denotes a link from ‘from’ to ‘to’. Reason

provides a mechanism for annotating /why/ the link exists. Reason is the slot
in which axiomatic relationships are recorded. There is no programmatic
restriction on what sort of values can be used as reasons. The intended use is
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that they represent bridging axioms, and these might be expressed differently
depending on ontology structure and the language being used. The printability
of reasons may have noticeable effects on GraphViz dot output."
(from (make-signature) :type signature)
(to (make-signature) :type signature)
reason)

(defstruct translation-graph
"A translation graph is a graph in the standard sense. Nodes is a set of

signatures, and edges is a set of edges on the nodes of the graph."
(nodes (set))
(edges (set)))

(defmacro tg-defun (name (graph signature &rest args) &body body)
"Define a function named name which accepts at least two arguments, a graph

and a signature. The final two forms of body should generate, respectively, a
value to use as a reason in the translation graph, and a new
signature. (Earlier body forms will be placed in the function definition as
with defun, and may be declarations or documentation.) The function, named
name, will evaluate the signature form to produce a signature. Two values
will be returned: the first is the new signature; the second is a translation
graph similar to graph, but with an edge from signature to the new signature."
(with-gensyms (sig2)
(destructuring-bind (reason-form sig-form) (last body 2)
‘(defun ,name (,graph ,signature ,@args)

,@(butlast body 2)
(if (not (lookup (translation-graph-nodes ,graph) ,signature))

(error "The signature ~A is not in the graph ~A."
,signature ,graph)
(let ((,sig2 ,sig-form))
(values ,sig2
(make-translation-graph

:edges (with (translation-graph-edges ,graph)
(make-edge
:from ,signature
:to ,sig2
:reason ,reason-form))

:nodes (with (translation-graph-nodes ,graph)
,sig2)))))))))

(defun tg-start ()
"Return as multiple values an empty signature and translation graph with a

single node (the signature)."
(let* ((signature (make-signature))
(graph (make-translation-graph :nodes (set signature))))

(values signature graph)))

(tg-defun tg-add-sort (graph signature sort-name &optional (sort (gensym)))
"As multiple values, return a new signature like signature in which

sort-name maps to sort, and a graph similar to graph in which there is an edge
from signature to the new signature."
(list :add-sort sort-name sort)
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(add-sort signature sort-name sort))

(tg-defun tg-remove-sort (graph signature sort-name)
"As multiple values, return a new signature like signature in which

sort-name does not map to any sort, and a graph similar to graph in which
there is an edge from signature to the new signature."
(list :remove-sort sort-name)
(remove-sort signature sort-name))

(tg-defun tg-add-functor (graph signature functor-name functor)
"As multiple values, return a new signature like signature in which

functor-name maps to functor, and a graph similar to graph in which there is
an edge from signature to the new signature."
(list :add-functor functor-name functor)
(add-functor signature functor-name functor))

(tg-defun tg-add-new-functor
(graph signature functor-name value-type &rest argument-types)
"As multiple values, return a new signature like signature in which

functor-name maps to a new functor described by value-type and argument-types,
and a graph similar to graph in which there is an edge from signature to the
new signature."
(list :add-new-functor functor-name)
(apply #’add-new-functor
signature functor-name value-type argument-types))

(tg-defun tg-add-functor-axiomatically
(graph signature axiom functor-name functor)

"As multiple values, return a new signature like signature in which
functor-name maps to functor, and a graph similar to graph in which there is
an edge from signature to the new signature which records the axiom."
axiom
(add-functor signature functor-name functor))

(tg-defun tg-add-new-functor-axiomatically
(graph signature axiom functor-name value-type &rest argument-types)
"As multiple values, return a new signature like signature in which

functor-name maps to a new functor described by value-type and argument-types,
and a graph similar to graph in which there is an edge from signature to the
new signature which records the axiom."
axiom
(apply #’add-new-functor
signature functor-name value-type argument-types))

(tg-defun tg-remove-functor (graph signature functor-name)
"As multiple values, return a new signature like signature in which

functor-name does not map to any functor, and a graph similar to graph in
which there is an edge from signature to the new signature."
(list :remove-functor functor-name)
(remove-functor signature functor-name))

;;; Printing DOT
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(defun print-signature-description-dot
(signature &optional (out *standard-output*))

"Print a label suitable for a dot node with shape=\"record\"."
(format out "{Sorts: ~{~A~^, ~}| Functions: ~{~A~^, ~}}"
(convert ’list (domain (signature-sorts signature)))
(convert ’list (domain (signature-functors signature)))))

(defun print-translation-graph-dot
(graph &optional (out *standard-output*))

"Print the dot representation of the translation graph to the specified
stream."
(flet ((p (&rest args) (apply #’format out args)))
(let ((ht (make-hash-table))

(nodes (translation-graph-nodes graph))
(edges (translation-graph-edges graph)))

;; the extra lookup here is due to the fact that edges may
;; record signatures which are no longer in the set (having been
;; replaced by signatures which (fset:compare) :equal). calling
;; lookup here ensures that we only reference the signature
;; which are actually currently in the set.
(macrolet ((sig-name (sig)

‘(gethash (nth-value 1 (lookup nodes ,sig)) ht)))
(p "digraph {~%")
(p " graph [];~%")
(p " node [fontname=\"Arial\",shape=\"record\"];~%")
(p " edge [fontsize=\"10\",fontname=\"Monaco\"];~2%")
(do-set (sig nodes)
(let ((name (string (gensym))))
(setf (sig-name sig) name)
(p " node [label=\"")
(print-signature-description-dot sig out)
(p "\"]; ~A;~%" name)))

(do-set (edge edges)
(p " ~A -> ~A [label=\"~A\"];~%"

(sig-name (edge-from edge))
(sig-name (edge-to edge))
(edge-reason edge)))

(p "}~%")))))

B.2 examples

This section contains example code illustrating how signatures can be con-

structed and related, and how translation graphs can be extracted from this process.
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