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Abstract

Human reasoning is heterogeneous. Whether reasoning formally or informally, human reasoners frequently

and effortlessly switch between many problem representations, reapplying results and techniques from

one domain in another. Research in artificial intelligence, on the other hand, often produces “mechanical

savants” that can solve one problem incredibly well, but are completely inapplicable to any other. In this

dissertation, we set out to investigate and implement formal methods and techniques that capture the

heterogeneity of formal human reasoning.

We review the ways in which combinations of logical systems have been used in mathematics and

artificial intelligence, and the types of results that have been realized though mappings between logics

and proof systems. We identify areas of research that are especially promising in automated reasoning and

the representation of logical systems: denotational proof languages and category theory. Denotational

proof languages are a family of languages that integrate deduction and computation. Category theory is

an abstract branch of mathematics that provides a high level of generality and unites, among other things,

many different types of logical systems.

Fusing denotational proof languages and category theory, we develop categorical denotational proof

languages. These are a variant of denotational proof languages that take proofs, realized as categorical

arrows, rather than propositions, as a fundamental building block. We demonstrate that category theory is

a suitable formalism for representing logical systems and the mappings between them, and that categorical

denotational proof languages are an effective tool for specifying the relationships between logical systems

and the transformations between them, and do so in a way that promotes proof reuse.

We designed and implemented a framework, programming language, and standard library for speci-

fying and programming in categorical denotational proof languages. We encoded a number of logical

systems, including several versions of the propositional calculus, and mappings between them, including

a mapping based on a translation between axiomatic proofs into natural-deduction proofs, and a mapping

based on the deduction theorem. We present examples illustrating how programs in this language achieve

heterogeneous reasoning, and conclude with discussion of future work and applications.

xii



Chapter 1

Introduction & Historical Review

1.1 Motivation

1.1.1 Human Reasoning is Heterogeneous

Human reasoning is undoubtedly heterogeneous. Such reasoning, whether formal or informal, incor-

porates multiple representations compatible and incompatible, complete and incomplete; and human

reasoners are adept at combining the results (e.g., arguments, proofs, mental models, examples and

counter-examples) into coherent structure. Some activities are more common in certain modes of rea-

soning than others. For instance, combining formal proofs and arguments may be more common in

mathematical reasoning, while checking consistency with existing mental models may be more common

in informal or non-deductive reasoning. The study of model theory explicitly looks to the connections

between axiomatizations and their interpretations. Humans build a variety of types of mental models

(and counterexamples) of propositions in informal contexts. Humans regularly construct and compare

competing arguments (Pollock, 1992). Humans also reason using many types of representations (e.g.,

formulae, diagrams) and are able to bring these representations to bear despite surface-level incompati-

bilities (Barwise & Etchemendy, 1995).

1.1.2 Humans Employ Tools

Not only are human reasoners capable of reasoning with many types of representations, proof theories,

argument modes, &c., but they also employ many types of tools to assist them in their reasoning.

Logic may be understood as the study of good reasoning. From Aristotle’s syllogisms to the present

day, philosophers have recognized, categorized, and codified valid and invalid patterns of reasoning. In

1



CHAPTER 1. INTRODUCTION & HISTORICAL REVIEW 2

the past hundred and fifty years, formal proof systems have proved both an interesting topic of study in

their own right as well as an incredibly useful tool.

Algorithms, formal and informal, have played an important role in human reasoning, providing

reusable techniques for answering questions. Closely related to the use of algorithms is the use of

heuristics. While human intuition can help to make reasoning into something of art, good heuristics can

always prove useful in reasoning tasks.

Human reasoners often use techniques and build tools that exploit correspondences; phonetic scripts

and cartography are superb examples. Barwise & Etchemendy (1995) give several examples (one of

which is discussed in Example 9 (p. 13)) of representations that depict some underlying reality through

the use of diagrams, portions of which correspond to underlying features. A less formal type of reasoning

that uses correspondences in representations is analogical reasoning (Sowa & Majumdar, 2003).

And, of course, another “tool” that humans use in both formal and informal reasoning is observation,

both direct and indirect. While abstract reasoning can help to understand the consequences of certain

premises, it is often observation that helps to determine what propositions to accept as premises.

1.1.3 Humans Automate and Combine Tools

Many of the tools used by human reasoners are informal in nature, but those that lend themselves to

rigorous, mechanical analysis can often be automated, fully or in part. Automation is, properly speaking,

a combination of formalisms, algorithms, and, sometimes, heuristics.

Automated theorem provers were one of the first applications of artificial intelligence in mathematics

and logic, and the field of automated theorem proving has since blossomed into a rich and fruitful field.

Indeed, the Logic Theorist (Newell & Simon, 1956; Newell et al., 1958), which was capable of proving

many of the theorems derived in Whitehead & Russell’s (1927) Principia Mathematica, was developed a

year before the term “artificial intelligence” was coined.

Automated proof assistants, ranging from the simple proof checkers to complex interactive proof

construction environments such as Isabelle (Paulson & Nipkow, 1994) and Coq (Bertot & Castéran, 2004)

have also proved an important advance in automated reasoning.

Model finders such as Paradox (Claessen & Sorensson, 2003) can be used to find satisfying inter-

pretations of sets of formulae that can serve as possible interpretations or as counterexamples, both of

which can be an aid in developing theories that accurately represent the intents of human reasoners.

(Arkoudas (2004) provides an illustrative example in which a model finder is used to find the “edge cases”

that an axiom set in development does not properly address.) Model finders can also serve as consistency
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checking tools: if a model finder is sufficiently powerful but cannot find a satisfying model of a set of

formulae, then the formulae must be inconsistent.

These are just a few instances of the ways in which human reasoners automate tools and techniques.

In all of these cases, the different procedures that human reasoners employ produce different types of

artifacts. Automated theorem provers produce proofs (often in proof systems that are not particularly

amenable to human analysis); model finders produce (usually complete) models, consistency checkers

may produce “yes” or “no” answers, or may be able to point out the specific location of an inconsistency

in a set of formulae. Humans excel at taking these various kinds of results, putting them together, and

drawing conclusions from them that no individual result could justify alone.

1.1.4 Our Motivation, In This Context

Yet, despite the growing use of increasingly powerful automated tools, this combining process seems to

be uniquely human. It is a suitable, if formidable, challenge, then, to attempt to automate or reproduce

mechanically at least certain aspects of this distinctly human process. Particularly, we should like to be

able to enable machines to reason using multiple representations and reasoning techniques jointly and

to subsequently combine the results. Though some of the most impressive work done by humans in

combining representations and reasoning artifacts is seen in the informal domain, we will restrict our

focus to formal, though not necessarily deductive, reasoning and representations.

1.2 Problem Statement

Problem Statement. Develop a formal system for: (i) specifying logical systems and the interactions and

relationships between them and (ii) proof construction using multiple logical systems; formally analyze

said system; implement in software.

To fulfill the problem statement, it will be necessary to have: (i) a rigorous and principled representation

of logical systems; (ii) a rigorous and principled representation of the interactions and relationships

between logical systems; and (iii) a user-interface or API for working with the resulting framework.

Additionally, from a pragmatic standpoint, we should also like to be able to retrofit existing formalisms

and automated tools for use in the new framework.

The next section will discuss some of the prior approaches toward representing logical systems and

working with multiple related logical systems. Ultimately we shall decide upon using a combination

of category theory and denotational proof languages to represent logical systems and the relationships
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between them, but the following discussion will influence this decision and inform the use of the chosen

formalisms.

1.3 Related & Prior Work

There is a great deal of prior work that looks toward representing logical systems, and there are many

cases through the history of mathematical logic of the relationships between them being considered. In

this section we will discuss several ad hoc approaches. We do not use the term ad hoc here is any pejorative

sense, but only to indicate that a particular approach was developed to address a particular case, and that

the ability to generalize was not a priority.

1.3.1 Ad Hoc Approaches

Throughout the history of formal logic, mathematicians and logicians have studied the relationships

between formal systems, including logical systems as well as other mathematical structures, directly using

techniques such as embeddings, translations, and encodings. In the field of computer science, particularly

within complexity theory, the use of reductions whereby a given problem of unknown complexity is

reduced to another of known complexity (i.e., an instance of the given problem can be deterministically

reformulated as an instance of the problem of known complexity) has long been used to gain understanding

of the “hardness” of different computing tasks.

Example 1 (Intuitionistic Propositional Calculus). Kolmogorov (1925/1967) compares the classical

propositional calculus developed by Hilbert with a weaker propositional calculus suitable for Brouwer’s

intuitionistic program. The latter Kolmogorov calls a “general logic of judgments,” and the former a

“special logic of judgments.” The two logics differ in which axioms they take, particularly regarding

negation. Kolmogorov’s terminology refers to the applicability of the intuitionistic calculus to any type of

proposition (especially in the domain of the infinitary) making it “general,” whereas Hilbert’s classical

calculus is suitable to only certain types of propositions (those in the domain of the finitary), making it a

“special” case. (The meanings of “finitary” and “infinitary” arise in intuitionistic mathematics, but are not

essential to the present discussion.)

The intuitionistic system, which Kolmogorov calls B, for Brouwer, is given by a language of formulae

built from propositional variables A, B, C , . . . and the logical connectives ⊃ and ∼ in the usual way,

and a proof calculus using modus ponens and subsitution of propositional variables. The system B has
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Axioms (1.1)–(1.4) for implication.

A⊃ (B ⊃ A) (1.1)

(A⊃ (A⊃ B)) ⊃ (A⊃ B) (1.2)

(A⊃ (B ⊃ C)) ⊃ (B ⊃ (A⊃ C)) (1.3)

(B ⊃ C) ⊃ ((A⊃ B) ⊃ (A⊃ C)) (1.4)

B also includes Axiom (1.5) for the principle of contradiction.

(A⊃ B) ⊃ ((A⊃ ∼B) ⊃ ∼A) (1.5)

The classical system, which Kolmogorov dubs H, for Hilbert, is simply B with the addition of Ax-

iom (1.6).

∼∼A⊃ A (1.6)

Kolmogorov proves that H is equivalent to Hilbert’s original system which had (1.1)–(1.4), but neither

(1.5) nor (1.6), but rather (1.7) and (1.8) for negation.

A⊃ (∼A⊃ B) (1.7)

(A⊃ B) ⊃ ((∼A⊃ B) ⊃ B) (1.8)

Kolmogorov treated the logics H and B as calculi with different domains of applicability. With

this understanding, H is a calculus for whose sentences the double negation principle, Axiom (1.6), is

applicable. That is, each sentence in H represents a judgment which follows from its double negation.

The principle of double negation does not hold in general for the sentences of B; i.e., there may be

sentences φ in B for which ∼∼φ ⊃ φ does not hold. Kolmogorov’s insight lay in asking whether there

are sentences in B for which the principle of double negation must hold. Brouwer (1925) had shown

that every negation has this property, by means of a proof in B with the conclusion ∼∼∼A⊃ ∼A. Thus

if a sentence φ is of the form ∼ψ, then ∼∼φ ⊃ φ. Kolmogorov further shows that if φ and ψ are

sentences each of which follows from its double negation, then φ ⊃ ψ also follows from its double

negation. Kolmogorov concludes that:

The precise boundary of the domain in which the special logic of judgments is applicable has

been found; this domain coincides with the domain in which the formula of double negation

is applicable. (Kolmogorov, 1925/1967, p. 427)

Though this translation, Kolmogorov showed that despite the foundational differences between
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classical and intuitionistic logic, and that the intuitionistic school of thought explicitly rejected some

classical principles, to every classical result there is an intuitionistic counterpart.

We will later develop more formal tools in which this type of result can be expressed (e.g., see

Example 30 (p. 35)), but for now we can point out a simple corollary from Kolmogorov’s result: any proof

in H can be translated into a B proof by translating each formula φ to a formula φ′ by: (i) replacing each

occurrence of a propositional variable A with its double negation ∼∼A; and (ii) replacing each use of the

double negation axiom in the proof with ∼∼φ ⊃ φ with the corresponding derivation of derivation of

∼∼φ ⊃ φ in B. (Other steps of the proof are simply substitutions, instances of axioms common to H

and B, or applications of modus ponens.)

Example 2 (First-Order Semantics for Modal Logics). Saul Kripke (1963) unified the study of a number of

modal logics when he presented frame semantics (now often called “Kripke semantics”) for understanding

these theories. The modal propositional logics with which he was concerned were those whose formulae

included the propositional calculus (i.e., propositional variables, and some complete set of connectives,

e.g., ∼ and ⊃) as well as the modal operator 2, where 2φ is a sentence whose meaning depends on

the interpretation of 2. For instance, in alethic modal logic, the logic of necessity, 2φ is read as “φ is

necessary,” and in deontic logic, the logic of obligation, it is read as “φ is obligatory.”

Kripke’s proposed semantics specified that a model structure consisted in a triple 〈G,K,R〉 where K

is a set of possible worlds, G is a special element of K (the “real world”), and R is a reflexive relation

on K (accessibility between worlds, or relative possibility). (The reflexivity of R is not strictly necessary,

and there are advantages to dropping it, as later authors did, but Kripke included this requirement.) A

model coupled a model structure with a mapping of sentences and the elements of K to truth values (so

as to speak of P being true in k1, Q being false in k2, and so on), such that the boolean connectives are

interpreted in the obvious way (e.g., P & Q is true in k if and only if P and Q are true in k), and such

that 2φ is true in k if and only if φ is true in every k′ such that kRk′, i.e., if φ is true in every world k′

accessible to k.

Though Kripke presented his semantic theory as just that, it is not difficult to understand a correspon-

dence with a first-order theory whose domain is K, and has a constant symbol G, and a binary relation R.

Modal formulae can be translated into first order formulae in the theory by the translation τ, defined
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as follows:

τ(φ) = t(φ,G)

t(∼φ, g) =∼ t(φ, g)

t(φ ⊃ψ, g) = t(φ, g) ⊃ t(ψ, g)

t(2φ, g) = ∀h [gRh ⊃ t(φ, h)]

Though there are efficient tableaux reasoning algorithms for these modal logics, this translation allows

the use of off-the-shelf general purpose first-order reasoners to be applied to problems in modal proposi-

tional logics. (Indeed, this is the approach used in at least one software system, viz., Slate (Bringsjord

et al., 2007).)

By encoding the semantics of this family of non-classical logics using first-order logic, many results

of first-order logic can immediately be carried over to modal logic. Additionally, automated reasoners

for first-order logic (both syntactic and semantic, e.g., both proof finders and model builders) can be

applied to modal logic. Conversely, specialized reasoners for modal logics can be applied to corresponding

fragments of first-order logic.

Example 3 (Fragments of First-Order Logic, Description Logics). Blossoming in the 1980’s and growing

up through the present day (particularly in the Semantic Web), Description Logics (for a comprehensive

reference, see Baader et al., 2003) have provided a concise syntax for certain types of knowledge

representation tasks.

In an impressive survey, Hustadt et al. (2004) examine the relationship of various description logics

with decidable fragments of first-order logic. Description logic formulae are partitioned into terminological

axioms and assertional sentences. The former define and relate concepts (classes of entities) and roles

(relationships among entities) while the latter assert individual membership in concepts and roles. While

standard first-order logics tend to provide a minimal syntax for constructing formulae, leaving little that

can be removed without severely restricting expressiveness and little that can be added that could not be

expressed in terms of existing constructs, description logics are built on a richer, more granular, syntax.

Description logics are typically given a set-based semantics by specifying a domain D and an interpretation

function I that maps individual names to elements of D, concept names to subsets of D, and role names

to subsets of D×D.

Hustadt et al. (2004) define a particular description logic, which they call DL, whose sublogics are

subsequently examined. The syntax for DL is reproduced in Table 1.1. The semantics of DL is reproduced

in part in Figure 1.1.
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Table 1.1: Constructors of DL. Term constructors are not necessarily independent. E.g., ⊥ is redundant
provided ∼ and >. The variables C and D range over concept terms, R and S over role terms, and a and
b over individual names.

Concept Terms Role Terms

> top concept 4 top role
⊥ bottom concept 5 bottom role
C u D concept intersection id(C) identity role on C
C t D concept union Ru S role intersection
∼C concept complement Rt S role union
∀R.C universal restriction R ◦ S role composition
∃R.> limited existential restriction ∼R role complement
∃R.C existential restriction R^ role inverse
∃≥nR, ∃≤nR number restrictions R+ transitive role closure
∃≥nR.C , ∃≤nR.C qualified number restrictions R � C domain restriction
(R ⊆ S) inclusion role value maps R � C range restriction
R= S equality role value maps

Terminological Sentences Assertional Sentences

C v D (Rv S) concept (role) subsumption a:C concept membership
C = D (R= S) concept (role) equivalence (a, b):R role membership

I(>) =D
I(⊥) = ;

I(C u D) = I(C)∩ I(D)
I(C t D) = I(C)∪ I(D)
I(∼C) =D \ I(C)

I(∀R.C) = { x ∈D | ∀y((x , y) ∈ I(R) ⊃ t ∈ I(C)) }
I(∃R.C) = { x ∈D | ∃y((x , y) ∈ I(R)& y ∈ I(C)) }
I(∃≥nR) = { x ∈D | n≤ |{ y ∈D | (x , y) ∈ I(R) }| }
I(R ⊆ S) = { x ∈D | ∀y((x , y) ∈ I(R) ⊃ (x , y) ∈ I(S)) }

I(4) =D×D
I(5) = ;

I(Ru S) = I(R)∩ I(S)

(D,I) |= a:C iff I(a) ∈ I(C)
(D,I) |= C v D iff I(C) ⊆ I(D)
(D,I) |= C = D iff I(C) = I(D)
(D,I) |= (a, b):R iff (I(a),I(b)) ∈ I(R)

Figure 1.1: Set-theoretic semantics, in part, of DL. D is a domain of individuals, and I which maps
individual, role, and concept names to elements of D, and complex role and concept expressions as
defined here.
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Table 1.2: Some decidable sublogics of DL can be obtained by restricting the available concept and role
constructors.

DL Sublogic Concept Constructors Role Constructors

ALC ∼,u,∃ (>,⊥,t,∀)
BML ∼,u,∃ (>,⊥,t,∀) ∼,u (5,4,t)
ALB ∼,u,∃ (>,⊥,t,∀) ∼,u,^, � (5,4,t, �)
Pierce Logic ∼,u,∃ (>,⊥,t,∀) ∼,u,^,◦, id (5,4,t, �, �)
PDL ∼,u,∃ (>,⊥,t,∀) t,◦,+, id(C) (5)

Table 1.3: Partial translation of DL sentences into first-order formula. Π(φ) translates the DL sentence φ
into a first-order formula. π′(R, X , Y ) produces a formula that indicates that the terms denoted by X and
Y stand in relation T . π(C , X ) produces a formula that indicates that the term denoted by X is a member
of the concept C .

Concept and Role Translations

π(A, X ) =QA(X ) π(C u D, X ) = π(C , X )&π(D, X )

π(∼C , X ) =∼π(C , X ) π(C t D, X ) = π(C , X )∨π(D, X )

π(>, X ) => π(∀R.C , X ) = ∀y(π′(R, X , y) ⊃ π(C , X ))

π(⊥, X ) =⊥ π(∃R.C , X ) = ∃y(π′(R, X , y)&π(C , y))

π′(P, X , Y ) =QP (X , Y ) π′(Ru S, X , Y ) = π′(R, X , Y )&π′(S, X , Y )

Sentence Translations

Π(C v D) = ∀x(π(C , x) ⊃ π(D, x)) Π(Rv S) = ∀x y(π′(R, x , y) ⊃ π(S, x , y))

Π(C = D) = ∀x(π(C , x)↔ π(D, x)) Π(R= S) = ∀x y(π′(R, x , y)↔ π′(S, x , y))

Π(a:C) = π(C , a) π((a, b):R) = π′(R, a, b)

The richer syntax of description logics facilitates exploration of sub-languages and extensions through

the addition and removal of concept and term constructors. For instance, Hustadt et al. (2004) point out

that the logics shown in Table 1.2 are obtained from DL by removing certain concept or role constructors.

Based on Figure 1.1, it is obvious that the semantics of description logics can be expressed using

first-order logic. In particular, the terminological and assertional sentences of a given description logic

can be recast as first-order formulae. Given a first-order predicate symbol QC for each concept symbol C

and a first-order binary relation symbol QR for each role symbol R, the translation given in Table 1.3 maps

DL sentences to first-order formulae.

Hustadt et al. (2004) make a number of connections between sublogics of DL and decidable fragments

of first-order logic. We summarize two to give a feel for the types of results that can be obtained using

these translation-based methods. These are both based on the translation Π defined in Table 1.3 applied

to sublogics of DL defined in Table 1.2.

• The translation Π maps ALC into the guarded fragment of first-order logic, GF . GF is decidable,

and its complexity is known. This provides an upper bound on reasoning complexity for ALC, and
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also allows any reasoner for GF to be applied to (the translation of) ALC formulae.

• Π maps ALB sentences into the two-variable fragment of first-order logic, FO2, whose complexity is

known. Again, this provides upper bounds for the complexity for ALB reasoning as well as usable

automated reasoners.

As with the previous example, a careful examination of the relationships between a family of non-

traditional logics and first-order logic gives benefits in automated reasoning to both domains: first-order

theorem provers and model finders can be applied to (translations of) description logics, and specialized

reasoning techniques developed for description logics can be applied to fragments of first-order logic.

Additionally, completeness and efficiency results derived in the study of description logics can be carried

over to corresponding first-order fragments.

Example 4 (Relating Ontologies with Bridging Axioms). A very important ad hoc technique from a practical

standpoint that has been used in relating and combining multiple knowledge representation and reasoning

systems is that of bridging axioms. A bridging axiom is simply an axiom that relates terms each of which

originate in different ontologies (Dou et al., 2005). In real-world applications, the development of

an interlingua, i.e., a logical language into which all the relevant logical systems can be translated, is

infeasible, and a much more realistic approach is to relate terms from different ontologies incrementally.

The creation of an appropriate set of bridging axioms for a given circumstance is something of an art,

though there has been work toward automating the process (Dou & McDermott, 2006).

My own earlier work (Taylor, 2007) examined principled ways of creating bridging axioms and

organizing them in such as a way as to include only those necessary for a particular reasoning task. This

resulted in the construction of translation graphs, such as the simple one shown in Figure 1.2.

While earlier examples highlighted the benefit of different types of logics and exploiting the similarities

between them, the present example points to the importance of and the need to work with multiple

logical systems of the same species. While it is common to speak of “first-order logic” as though it were

one system, in reality every practical application of first-order logic requires a custom vocabulary and

O1

Sorts:
Person

Functors:
Child,
Sister,
Brother

Sorts:
Person

Functors:
Parent,
Child,
Sister,
Brother

+Parent
(forall (x y)
  (iff (Parent x y)
       (Child y x))) Sorts:

Person

Functors:
Sibling,
Parent,
Child,
Sister,
Brother

+Sibling
(forall (x y)
  (iff (or (Brother x y)
            (Sister x y))
       (Sibling x y)))

O2

Sorts:
Person

Functors:
Sibling,
Parent

-Sister,
 Brother,
 Parent

Figure 1.2: A translation graph relating two genealogical ontologies. Two intermediate ontologies
are constructed, each of which has a vocabulary distinct from O1 and O2. In general, reasoning with
information from multiple ontologies requires the axioms along the paths connecting the ontologies.
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set of axioms in addition to the standard logical connectives, axioms, and inference rules. The use of

bridging axioms and translation graphs are techniques that can help in situations where two or more

existing logical systems must be brought together.

Example 5 (KIF (Knowledge Interchange Format)). The Knowledge Interchange Format, KIF (Genesereth

& Fikes, 1997), was developed to provide a standard syntax for expressing ontologies and instance data.

A common format reduces the interoperability challenge to that of discovering or engineering appropriate

bridging axioms and efficient reasoning.

While the concept of a standard representation for information is not in and of itself a particularly

interesting accomplishment, KIF is notable for several reasons:

• KIF provides numerous constructs particularly suited to the challenges faced by knowledge engineers,

e.g., special defining operators such as defining-axiom, defobject, deffunction, and defrelation.

• KIF provides built-in libraries for common representation tasks and data structures including

numbers, lists, and sets.

• KIF was developed by an Interlingua Working Group as part of the DARPA Knowledge Sharing Effort.

This indicates the recognition by government agencies of the importance of knowledge sharing and

interchange.

The KIF effort addressed some of the same goals that bridging axioms and translation graphs did,

viz., achieving interoperability. However, where bridging axioms and translation graphs addressed the

connections between logical systems at a very high level, KIF provided a concrete syntax for the exchanging

formulae and bridging axioms. Where the high-level techniques could assist in determining a plan for

how multiple systems might be joined up, KIF answered many of the practical engineering challenges

inherent to implementation of such a joined up system.

Example 6 (RDF, OWL, &c.). Where the existence of KIF demonstrated the need for knowledge sharing and

interoperability within the government and defense communities, Semantic Web technologies including

RDF and OWL show that industry and academia also recognize the same needs. The Semantic Web

languages, particular the Web Ontology Language (OWL) family (Bechofter et al., 2004) draw heavily

upon Description Logics.

The development of the Semantic Web and Semantic Web Languages combine some of the most

important facets of description logics and knowledge interchange efforts. The OWL family of logics fall

mostly with the expressiveness of description logics, and so reasoners with acceptable complexities can be

applied (whereas KIF could provide no such guarantees). RDF and OWL also have syntax based in XML
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(as well as representations in other forms) which alleviate many problems relating to namespaces and

common vocabulary terms often occurred in simpler representations.

Example 7 (IKRIS). In 2004, the Disruptive Technology Office (DTO) (which subsequently evolved into

the Advanced Research and Development Activity (ARDA), and finally the Intelligence Advanced Research

Projects Activity (IARPA)) sponsored a challenge workshop, IKRIS: Interoperable Knowledge Representation

for Intelligence Support (Thurman et al., 2006), with the purposes of enabling interoperability between

knowledge representation and reasoning systems developed for and used by the intelligence community

and developing a knowledge representation suitable for the tasks performed by those within the intelligence

community. The IKRIS workshop produced two knowledge representation languages, both extensions of

Common Logic (ISOCommonLogic, 2007): the IKRIS Knowledge Language (IKL) (Hayes, 2006; Hayes &

Menzel, 2006); and the IKRIS Context Logic (ICL) (Cheikes, 2006).

The IKRIS workshop was prompted by many of the same types of needs that brought about the

KIF effort. The recognition that many of the knowledge representations and databases used within the

intelligence and defense communities had no capabilities for interoperability, coupled with a heightened

emphasis on information sharing between agencies, motivated the development of a formalism for relating

these systems. The variety of types of information at hand required logics much more expressive than

description logics and, at least superficially, first-order logic.

1.3.2 Heterogeneous Logic

Barwise & Etchemendy (1996) present heterogeneous logics as framework for unifying different ap-

proaches to reasoning with multiple logical systems, particularly for reasoning with both linguistic (i.e.,

sentence-based) and diagrammatic logics. They place particular emphasis on systems with representations

that are homomorphic, i.e., representation schemes which themselves have some of the same structures

as the information that they represent. For instance, the placement of numbers on a number line provides

a homomorphic representation of the less-than and greater-than relations, whereas a sentential repre-

sentation using the relation symbols < and > does not, as shown in Figure 1.3. Barwise & Etchemendy

provide an informal ontology for homomorphic representations, and for combinations of logical systems

that do not employ an interlingua or “universal scheme of representation.” Rather, the logical systems

which they combine are united by a common underlying semantic structure which each representation

describes incompletely. (Note that this is in distinct contrast with some earlier examples (e.g., KIF)

wherein languages were developed expressly for the purpose of developing interlinguae.)
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x < y

y < z

x > w
w x y z

Figure 1.3: Non-homomorphic and homomorphic representations for the ordering relations on numbers.
Axioms would allow the inference of w< z from the formulae on the left, but the same relation can be
observed directly from the number line.
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Figure 1.4: Three types of diagrams, viz.: timing diagrams, state diagrams, and circuit diagrams, are all
used to describe a unit pulser. Each diagram depicts aspects of the underlying pulser, but no representation
represents all aspects of the pulser.

Example 8 (Unit Pulsers). Barwise & Etchemendy (1996) cite Johnson et al.’s (1996) use of various kinds

of diagrams in electronic hardware design as a natural use of heterogeneous reasoning incorporating

linguistic (i.e., natural language) and diagrammatic representations. In the design of a unit pulser,

for instance, three types of diagrams, shown in Figure 1.4, are employed, viz.: state diagrams, timing

diagrams, and circuit diagrams. Each type of diagram represents some aspect of the hardware under

development, but no type of diagram captures the entire design:

There are hundreds of different relationships that figure into the design of a new chip or

other electronic device. These relationships typically cluster into families, depending on what

perspective one takes for the moment. . . . Engineers have solved this representation problem

with three separate representational systems: state charts for the representation of control,

circuit diagrams for the representation of gate information, and timing diagrams for the

representation of timing. (Barwise & Etchemendy, 1996, p. 183)

Example 9 (Hyperproof). Barwise & Etchemendy’s (1994) Hyperproof is a superb example of the use of

heterogeneous logic to combine sentential and diagrammatic logics for reasoning about a blocks-world

environment. Hyperproof is a software and textbook package that provides a proof environment which

combines a Fitch-style natural-deduction proof system with a simple diagrammatic logic. (We describe

Fitch-style systems later, in Example 14 (p. 21).) Both representations are incomplete representations of

a blocks-world.

The language of the Fitch-style natural-deduction proof system is a typical first-order language for

a blocks world. The typical boolean connectives and first-order quantifiers are available and sentences



CHAPTER 1. INTRODUCTION & HISTORICAL REVIEW 14

are built in the standard way. The predicates and relation symbols used for describing the blocks world

are: (unary) Small, Medium, Large, Tet, Cube, and Dodec; (binary) =, Larger, LeftOf, FrontOf, Adjoins,

SameSize, SameShape, SameRow, and SameColumn; and (ternary) Between. The inference rules in the

sentential proof system are typical of a Fitch-style natural deduction proof system, including introduction

and elimination rules for each connective.

The diagrammatic representation consists of a grid on which the tokens of sixteen different types are

placed. Each token has a particular size (small, medium, large, or unknown) and a particular shape (cube,

tetrahedron, dodecahedron, or unknown). (The unknown shape is represented by sack, and the unknown

size by a cylinder with a question mark.) The shape, size, and placement of a token on the grid represents

the shape, size, and placement of a corresponding block in a blocks world.

Note at this point that neither the sentential nor the diagrammatic representations can represent all

the relevant aspects of the underlying blocks world. For instance, there is no way to represent the absolute

position of a block with the sentential representation. Yet there is no way of representing, for instance, the

fact that a given block is to the left of another with the diagrammatic representation without specifying

absolute positions of the two blocks.

After defining a blocks-world semantics, definitions of satisfiability and consequence relations for

sentences and diagrams are straightforward. (It should be noted, however, that care must be taken

with the diagrams to distinguish between what a diagram does not show to hold and what a diagram

shows not to hold. The underlying logic has three values: true, false, and indeterminate.) This requires

nothing out of the ordinary for the sentential representation, but there are some points of interest for the

diagrammatic representation, including that: every diagram is consistent; and if each of two diagrams d

and d ′ is a logical consequence of the other, then d = d ′. We mention these points only to highlight the

fact that Hyperproof’s diagrammatic representation has characteristics that distinguish it not only from

Hyperproof’s sentential representation, but from typical sentential representations in general.

The most interesting aspect of Hyperproof from the perspective of the present work, however, is the

relationship and interaction between the sentential and the diagrammatic proof systems. This interaction

is achieved through the use of two inference rules specific to the combined proof environment, Observe

and Cases Exhaustive.

A user with a diagram uses the Observe rule to derive sentences which, based on the diagram, must

be true. For instance, if a diagram shows that a is a tetrahedron, then the user is justified in using the

rule Observe to derive the sentence Tet(a). Thus Observe allows a user with a diagram to obtain new

sentences.

The Cases Exhaustive rule allows a user in possession of a diagram d and a sentence to construct a
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number of diagrams d1, . . . , dn each more specific than d and to mark that set of diagrams as an exhaustive

set of extensions of d with respect to the sentence. The diagrammatic rule Merge can subsequently be

used to derive a new diagram which is like d but extended with any information which is common to

all of d1, . . . , dn. This combination of Cases Exhaustive with Merge allows a user with a diagram and a

sentence to obtain new diagrams.

Hyperproof is an important example of the combination of two logical systems with different char-

acteristics. We note that the two logical systems can exist on their own and be used independently for

reasoning about blocks-world environments, but that their combination, when augmented with appro-

priate inference rules for relating the different representations, can achieve results that neither system

alone could. Importantly, Hyperproof uses no interlingua or common representation scheme, but bases

the combination of logical systems only on the presence of a common underlying semantics.



Chapter 2

Theory

In this chapter, we will review the historical treatments of logical systems that are most important to our

present efforts. Particularly, we will briefly cover and give examples of the two major types of proof calculi

(viz., axiomatic and natural deduction), we will examine a somewhat more recent category-theoretic

approach to proof systems (deductive systems and categories), and we will review the formal calculus

underlying the denotational proof languages (the λµ-calculus).

2.1 Traditional Treatments

A logic, or logical system, is defined by specifying its language of formulae and its rules of proof construction.

In fact, since some proof construction rules might appeal to entities other than formulae, an even more

general definition would have a logic defined by a set of proof construction rules, but in practice the proof

construction rules require the notion of formula, so we maintain the distinction between languages and

proof systems.

Logical languages are classes whose members are propositions expressing formulae. The languages

of propositional logics are typically specified by defining a set of atomic formulae, and a set of logical

connectives by which formulae can be combined into compound formulae. The languages of first-order

logics are usually more complicated, defining first a set of terms, including variables, constants, and

compound terms, and then a set of atomic formulae, and again a set of logical connectives and quantifiers

by which compound formulae are formed. Modal logics, both propositional and first-order, introduce

intensional operators by which other types of sentences can be constructed. For the most part, we will

not be concerned in any depth with the particular languages of the logics we will consider, these being

well-studied and not directly relevant to the issues we will treat. It is worth noting, however, that the

16
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formulae of many logics are decidable sets; i.e., the class of formulae is in fact a set, and it is decidable

whether an expression is in fact a formula. This shall be the case for all logics we consider herein.

Proof construction rules provide a way of combining formulae and, sometimes, other relevant entities,

into proofs expressing chains of reasoning. There are many kinds of proof systems, and though our primary

concern is not with any one type in particular, there are several dominant traditions by which most proof

systems are influenced. Two such traditions are the axiomatic and natural-deduction approaches.

2.1.1 Axiomatic Proof Systems

An axiomatic, or Hilbert-style,1 proof system begins with the specification of a logical language. The

specification determines the class of well-formed formulae of the language, and is typically given by

some set of rules or a grammar, though the only requirement is that the set of well-formed formulae is

decidable. A subset of the well-formed formulae are then taken as axioms. Axioms are typically specified

schematically, e.g., an axiomatic proof system for the propositional calculus might have the axiom schema

φ ⊃ (ψ ⊃ φ), all of whose instances (i.e., formulae obtained by uniformly substituting formulae of the

language for φ and ψ) are axioms of the proof system. Finally, an axiomatic proof specifies a (usually

small) number of inference rules by which formulae may be derived from other formulae. A proof is simply

a sequence of formulae in which each formulae is either an axiom or a formulae justified by an inference

rule on the basis of prior formulae in the proof. Many axiomatic proof systems for the propositional

calculus adopt the sole rule modus ponens by which ψ is derived from instances of φ ⊃ψ and φ.

Example 10 (Axiomatic Propositional Calculus). An axiomatic proof system for the propositional calculus

discovered by Łukasiewicz (1948) uses three axiom schemata and one inference rule. The language

of well-formed formulae is given as follows. A set of propositional variables { p, q, r, . . . } is fixed, each

of whose members is a formula. Additionally, if φ and ψ are formulae, then so too are ∼φ and the

material conditional φ ⊃ψ. It is common to define other connectives in terms of ∼ and ⊃. For instance, a

conjunction φ &ψ may be defined as ∼(φ ⊃ ∼ψ). The disjunction φ ∨ψ might be defined as ∼φ ⊃ψ.

The axioms of the propositional calculus are the instances of three schemata:

φ ⊃ (ψ ⊃ φ) (PC1)

(φ ⊃ (ψ ⊃ ρ)) ⊃ ((φ ⊃ψ) ⊃ (φ ⊃ ρ)) (PC2)

(∼ψ ⊃ ∼φ) ⊃ (φ ⊃ψ) (PC3)

A proof is simply a sequence of formulae each of which is either an axiom (i.e., an instance of one of
1The term “Hilbert-style proof calculus” or “Hilbert system” is common, but systems of this type were developed and used by

many mathematicians prior to (and after) the development of natural-deduction proof calculi.
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the axiom schemata) or the result of an application of modus ponens to two earlier formulae in the proof.

In this axiomatic system, we may construct a proof of the formula p ⊃ p:

1. p ⊃ ((p ⊃ p) ⊃ p) (PC1)

2. (p ⊃ ((p ⊃ p) ⊃ p)) ⊃ ((p ⊃ (p ⊃ p)) ⊃ (p ⊃ p)) (PC2)

3. ((p ⊃ (p ⊃ p)) ⊃ (p ⊃ p)) modus ponens 1, 2

4. p ⊃ (p ⊃ p) (PC1)

5. p ⊃ p modus ponens 4, 3

An important meta-logical result in some axiomatic systems is the deduction theorem. The deduction

theorem states that if a formulae ψ can be proved from the axioms and inference rules of the logical

system as well as an additional premise φ, then the conditional φ ⊃ψ can be proved in the logical system

alone. For instance, taking ∼∼∼ p ⊃ ∼ p as a premise, we can prove p ⊃ ∼∼ p:

1. ∼∼∼ p ⊃ ∼ p premise

2. (∼∼∼ p ⊃ ∼ p) ⊃ (p ⊃ ∼∼ p) (PC3)

3. p ⊃ ∼∼ p modus ponens 1, 2

Then, according to the deduction theorem, there is a proof in the axiomatic system of the conditional

(∼∼∼ p ⊃ ∼ p) ⊃ (p ⊃ ∼∼ p)

that does not make use of any premises.

More generally, when a formula φ is provable in the logical system with a set of premises Γ , we write

Γ ` φ. When φ can be proved without the use of any premises, we write ; ` φ, or just ` φ, and φ is

said to be a theorem. Restated with this notation, the deduction theorem states that if Γ ∪ {φ } ` ψ,

then Γ ` φ ⊃ψ.

Example 11 (Axiomatic T). Alethic modal logics deal with sentences of the form “it is necessary that . . . ”

and “it is possible that . . . .” We now consider an example of a simple axiomatic proof system for the

alethic modal logic, T. The set of formulae of T is a superset of the formulae of the propositional calculus.

Again, we fix a set of propositional variables, { p, q, r, . . . }, each of which is a formula. Furthermore, if φ

and ψ are formulae, then so are ∼φ, φ ⊃ψ, and 2φ. The latter is read as “it is necessary that φ,” or

“necessarily φ.” T includes an axiomatization of the propositional calculus (e.g., the one discussed in the
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previous example, but any suitable axiomatization will do), and two additional axiom schemata:

2(φ ⊃ψ) ⊃ (2φ ⊃2ψ) (dist)

2φ ⊃ φ (M)

Like the propositional calculus, T includes modus ponens as an inference rule, and also adds the necessita-

tion rule,
` φ
2φ

which states that if φ is a theorem, then so too is 2φ.

Example 12 (Axiomatic First-Order Logic). The propositional calculus dealt with propositional variables

and T extended the logical language to include assertions concerning necessity. The language of first-order

logic is more complex, but permits expressions concerning individuals and quantification thereover.

Central to the language of first-order logic are terms. We fix a set of variables, { v0, v1, v2, . . . }, each

of which is a term. Intuitively, a term denotes an individual.

We also have a set of relation, or predicate, symbols. For each non-negative integer n, we have a set

of relation symbols of arity n, { pn
0 , pn

1 , . . . }. For any collection of terms { t1, t2, . . . , tn }, the expression

pn
i (t1, . . . , tn) is a formula. Other formulae are built from the logical connectives ∼ and ⊃ as before; if φ

and ψ are formulae, then so too are ∼φ and φ ⊃ψ. Additionally, for any variable x , (∀x)φ is a formula

if and only if φ is a formula. We define free and bound variables in the typical way. We will write φ(x) to

indicate that x may appear free in φ and φ(a/x) to indicate the formulae obtained from φ by substituting

all free occurrences of x with a.

The axiomatic treatment of first-order logic has the axiom schemata of the propositional calculus as

well as one additional axiom schema for the universal quantifier, given now.

[(∀x)φ(x)] ⊃ φ(a/x) where a does not become bound in φ (FOL)

Additionally, there is one new inference rule.

φ ⊃ψ(x)
φ ⊃ (∀x)ψ(x) ∀ rule where x does not appear free in φ

2.1.2 Natural Deduction

The axiomatic approach to logical systems is relatively minimal, a property which leads to certain pleasant

mathematical properties. However, the small size of the logical system tends to make proofs rather large

and unwieldy. For instance, the proof of p ⊃ p given above requires five lines, and the derivation is not
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particularly intuitive. The theorem, however, is intuitively acceptable almost immediately.

Gentzen (1935) developed the first natural-deduction proof systems as alternatives to the axiomatic

systems that would more closely follow the actual processes of mathematical reasoning. Natural-deduction

systems, like axiomatic systems, begin by specifying a logical language, i.e., a set of well-formed formulae,

but, in contrast, have few, if any, axiom schemata, instead incorporating a larger set of rules. In contrast

to axiomatic approaches which begin with instances of axioms (and only add the notion of premises later),

natural-deduction proof systems are concerned with assumptions from the very beginning. The process

of constructing proofs in a natural-deduction system is that of establishing judgments of the form Γ ` φ

based on the prior establishment of other judgements.

Prawitz (1965) provides a thorough coverage of natural-deduction proof systems for a number of

logics, including first-order logic, second-order logic, intuitionistic logic, and modal logic, and examines

the concept of proof normalization, as well.

Example 13 (Natural-Deduction Propositional Calculus (Tree Style)). We consider a natural-deduction

proof system for the propositional calculus. The language is the same as that defined in Example 10 (p. 17).

The logical system has no axiom schemata, but has several introduction and elimination inference rules

for each of the logical connectives (i.e., ∼, &, ∨, and ⊃). For instance, if p and q have been derived with

respect to some set of premises, then p & q can be derived using that same set of premises using the

conjunction introduction rule, &I . Schematically,

....
p

....
q

p & q &I

Premises are introduced with the [·] notation. For instance, the following derivation of p & r is based

on two premises: p and q & r:

[p]
[q & r]

r &E2

p & r
&I1

Some rules discharge previously introduced assumptions. For instance, when a formulae ψ has been

derived using an assumption φ, conditional introduction is used to discharge the assumption φ and

conclude the conditional φ ⊃ψ. Using this rule, the conditional p ⊃ (q∨ p) can be established by deriving

q ∨ p from an assumption p and then discharging the assumption with conditional introduction:

[p]
q ∨ p ∨I2

p ⊃ (q ∨ p)
⊃ I
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[∼φ]....
ψ&∼ψ
φ

∼ E

[φ]....
ψ&∼ψ
∼φ ∼ I

φ &ψ
φ

&E1
φ &ψ
ψ

&E2
φ ψ

φ &ψ
&I

φ ∨ψ

[φ]....
ρ

[ψ]....
ρ

ρ ∨E

φ

φ ∨ψ
∨I1

ψ

φ ∨ψ
∨I2

φ φ ⊃ψ
ψ

⊃ E

[φ]....
ψ

φ ⊃ψ ⊃ I

Figure 2.1: Natural-deduction rules for the propositional calculus.

The inference rules used in this natural-deduction proof system are given in Figure 2.1.

Proofs of the judgments ` p ⊃ p and {∼∼∼ p ⊃ ∼ p } ` p ⊃ ∼∼ p} are now given for comparison

with their axiomatic counterparts developed earlier in Example 10 (p. 17).

[p]
p ⊃ p ⊃ I

[p]
[∼∼∼ p] [∼∼∼ p ⊃ ∼ p]

∼ p ⊃ E

p &∼ p &I

∼∼ p ∼ E

p ⊃ ∼∼ p ⊃ I

Example 14 (Natural-Deduction Propositional Calculus (Fitch Style)). The tree-form presentation of

natural-deduction proofs in the previous example is common. Another common form was developed

by Fitch (1952) and uses conditional subproofs for structuring and regulating the scope of assumptions.

Fitch’s treatment also incorporates more of the linear structure of the presentation of proofs. A Fitch style

proof is essentially a hierarchy of subproofs. Within each subproof is a sequence of steps, each of which

is either an application of a rule to previous steps, or a nested subproof. As an example, consider the
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following Fitch-style derivation of p ⊃ (q ⊃ r) from the premise (p & q) ⊃ r.

1 (p & q) ⊃ r

2 p

3 q

4 p & q &I 2, 3

5 r ⊃ E 1, 4

6 q ⊃ r ⊃ I 3–5

7 p ⊃ (q ⊃ r) ⊃ I 2–6

The first line introduces the premise, or assumption, (p &q) ⊃ r. The second line introduces p, and the

third line introduces q. The fourth line is in the scope of the assumptions p and q and uses conjunction

introduction to produce p & q, citing the second and third lines. The fifth line uses conditional elimination,

or modus ponens to derive r from the initial assumption and the derived conjunction p & q. At this point,

the subproof that began on the third line is terminated. The sixth line uses conditional introduction to

cite the entire subproof that ran from the third line to the fifth line, which started with the assumption

q and ended with the conclusion r, to produce the conditional q ⊃ r. At this point the subproof that

introduced the assumption p is terminated, and the seventh line uses conditional introduction, citing the

just-terminated subproof, to introduce the conditional p ⊃ (q ⊃ r).

We have used the same names for rules used in this Fitch-style presentation of the propositional

calculus as those used in the tree-style presentation, and the intended meanings should be obvious.

The Fitch-style presentation of the propositional calculus is quite intuitive and readable. Specifying the

mechanics of proof construction is somewhat more complicated, as the lines citeable by inference rules

are restricted by assumption scope. For instance, it would not be permissible for the sixth line to conclude

p & q by conjunction introduction citing the second and third lines, for the scope of the assumption q has

been terminated. Intuitively, rules may only cite earlier lines at a level equal or higher than their own.

We shall not spend a great deal of time working with Fitch-style proofs, as their mechanics tend to be

somewhat complicated, but they will prove quite useful in comprehending the scope of different reasoning

contexts. (In this case, the “new context” is that of having an additional premise.)

Example 15 (Natural-Deduction T (Tree Style)). We now consider a natural-deduction treatment of the

modal logic T. We use the same basic language as that used in the natural deduction propositional calculus

(i.e., a set of propositional formulae, each of which is a formulae, and we take all the logical connectives

∼, &, ∨, and ⊃, as primitive). In addition, if φ is a formulae, then so too is 2φ.

This natural-deduction treatment of T has no axioms, but incorporates the rules of the propositional



CHAPTER 2. THEORY 23

calculus just developed, as well as two additional rules for handling modalities.

The first inference rule, necessity elimination, or 2E, is straightforward:

2φ

φ
2E

Necessity elimination captures the behavior of (M).

The second modal inference rule, necessity introduction, or 2I , has the following form:

....
φ

2φ
2I

This appears to say that when φ is derivable, so is 2φ. It is the case that if φ is a theorem, then 2φ should

be too, but what happens in the case that the derivation of φ includes an assumption? We certainly should

not be able to infer 2φ by first assuming φ! Indeed, uses of 2I must satisfy an additional constraint,

namely that any undischarged assumption used in the proof of φ must be of the form 2ψ and must be

immediately used by necessity elimination.

Here is a proof demonstrating the use of 2E and 2I to show that {22p,2(p ⊃ q) } `2(q ∨ ”r).

[22p]
2p 2E
p 2E

[2(p ⊃ q)]
p ⊃ q 2E

q ⊃ E

q ∨ r ∨I1

2(q ∨ r)
2I

Remark 1 (Other Modal Natural Deduction Rules). Numerous variations of the natural-deduction modal

rules have been proposed, but most share common themes. We required that the undischarged assumptions

in a necessity introduction subproof all be modal and that necessity elimination was used immediately

after assumption. Satre (1972) surveyed a variety of proposed sequent-based natural deduction rules for

a number of modal logics gives several that are essentially equivalent to the one we provided, including

these two (the subscripts appear in Satre’s (1972) list and are provided for reference):

Γ `2∆ ∆ ` B
Γ `2B

2I1
∆ ` B
∆ `2B

2I11 provided that all hypothesis of ∆ are of the
form of either 2C or 3C for some wff C

Prawitz (1965) relaxes the restriction on undischarged assumptions through the use of “essentially

modal formulae.” Undischarged assumptions no longer need be modal formulae, but the inferences drawn

from them must, at some point before the final conclusion, be modal formulae. Bierman & de Paiva (2000,

p. 390) take a different approach, wherein all undischarged assumptions must be modal, and all are

discharged by the necessity introduction rule. This comparison is shown in the following; Prawitz’s rule is
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shown on the left, Bierman & de Paiva’s on the right.

∆1....
2B1 · · ·

∆k....
2Bk....

A
2A 2I

....
2A1 · · ·

....
2Ak

�

2Ax1
1 · · · 2Axk

k

�

....
B

2B
2Ix1,··· ,xk

Example 16 (Natural Deduction T (Fitch Style)). Konyndyk (1986) presents a Fitch-style proof system for

the modal logic T, and it will prove instructive to examine this system here. The Fitch-style proof system

for T builds upon the Fitch-style propositional calculus system by extending the language such that where

φ is a formula, so too is 2φ, and extends the propositional calculus with three new inference rules. The

first, necessity elimination, is the same as that given for the tree-based presentation:

1 2φ

2
...

3 φ 2E 1

The other two rules are T-reiteration and necessity introduction, and both refer to the final new

construct of this proof calculus, the modal subproof. In addition to the conditional introduction subproofs

already seen, the Fitch-style proof system for T has modal subproofs which permit reasoning in the context

of what is necessary. A modal subproof introduces a new “scope” and is visually similar to a conditional

subproof, but does not introduce any assumptions. Modal subproofs are used with two inference rules:

(i) necessity introduction or 2I ; and (ii) T reiteration.

The necessity introduction rule cites a necessity subproof and derives 2φ when one of the formulae

derived in the necessity subproof is φ:

1 2
...

2 φ

3 2φ 2I 1–2

The necessity subproof intuitively represents reasoning about things which are necessary, and necessity

introduction is the mechanism by which these necessary results are extracted from the subproof. In order

to ensure that the reasoning occurring within a necessity subproof cites only necessary things, rules used

within a necessity subproof, with one exception, cannot cite formulae outside of the subproof.

The T reiteration rule is the sole exception to the restriction on what can be cited in a necessity

introduction subproof. Using T reiteration, we may cite a formulae 2φ that occurs one level outside the
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necessity subproof and reiterate φ inside the subproof:

1 2φ

2 2
...

3 φ T reit 1

Using this proof system, we can recreate the tree-based derivation of { 22p,2(p ⊃ q) } `2(q ∨ r):

1 22p

2 2(p ⊃ q)

3 2 2p T reit 1

4 p 2E 3

5 p ⊃ q T reit 2

6 q ⊃ E 4,5

7 q ∨ r ∨I 6

8 2(q ∨ r) 2I 3–7

Recall that the necessitation rule in the axiomatic presentation of T affirmed that any theorem is

necessary. That is, if ` φ, then 2φ. Since conditional subproofs can also occur within a necessity

subproof, any theorem can be derived within a necessity subproof. For instance, consider the theorem

((p &q) ⊃ r) ⊃ (p ⊃ (q ⊃ r)), which we derive within a necessity subproof and to which we apply necessity

introduction.

1 2 (p & q) ⊃ r

2 p

3 q

4 p & q &I 2, 3

5 r ⊃ E 1, 4

6 q ⊃ r ⊃ I 3–5

7 p ⊃ (q ⊃ r) ⊃ I 2–6

8 ((p & q) ⊃ r) ⊃ (p ⊃ (q ⊃ r)) ⊃ I 1–7

9 2((p & q) ⊃ r) ⊃ (p ⊃ (q ⊃ r)) 2I 1–8

Example 17 (First-Order Logic (Tree & Fitch Style)). We now look at tree and Fitch-style natural-deduction

proof systems for first-order logic. The language is exactly the same as the language of the axiomatic

counterparts. Using the same natural-deduction pattern of introduction and elimination rules already

developed, we expect to see an introduction and elimination rule for the new logical symbol, the universal
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quantifier ∀. The elimination rule is straightforward: from a universal (∀x)φ(x) we may infer any

instance of φ with a term t substituted for x .

(∀x)φ(x)
φ(t/x) ∀E

The corresponding introduction rule is somewhat more complex, in that it places an extra constraint on

assumptions appearing earlier in the proof.

....
φ(a/x)
(∀x)φ(x) ∀I

when a does not appear free in any
undischarged assumption in the proof
of φ(a/x)

The constraint that a does not appear free in any undischarged assumption of the proof of φ(a/x) ensures

that a is acting as an “arbitrary name,” i.e., one about which no extra assumptions have been made.

Here is a proof of (∀z)(p(z) ⊃ r(z)) from (∀x)(p(x) ⊃ q(x)) and (∀y)(q(y) ⊃ r(y)). Note that in the

use of universal introduction, there was an assumption in which a appeared free, namely p(a), but that it

was discharged by the conditional introduction that produced p(a) ⊃ r(a).

[p(a)]
[(∀x)(p(x) ⊃ q(x))]

p(a) ⊃ q(a) ∀E

q(a)
⊃ R

[(∀y)(q(y) ⊃ r(y))]
q(a) ⊃ r(a) ∀E

r(a)
⊃ E

p(a) ⊃ r(a)
⊃ I

(∀z)(p(z) ⊃ r(z)) ∀I

The Fitch-style treatment of first-order logic adopts universal elimination in the obvious form, but

introduces a new type of subproof to handle universal introduction. In T, the necessity subproof provided

a way by which to reason in a new context, that of things that are necessary. In first order logic, we

have “arbitrary individual” subproofs in which a designated name is understood to denote an arbitrary
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individual. Let us examine the same proof in the Fitch-style proof system:

1 (∀x)(p(x) ⊃ q(x))

2 (∀y)(q(y) ⊃ r(y))

3 a p(a) ⊃ q(a) ∀E 1

4 p(a)

5 q(a) ⊃ E 3, 4

6 q(a) ⊃ r(a) ∀E 2

7 r(a) ⊃ E 5, 6

8 p(a) ⊃ r(a) ⊃ I 4–7

9 (∀z)(p(z) ⊃ r(z)) ∀I 3–8

While the “arbitrary individual” subproof make no restrictions on what lines rules may cite, it is required

that the name a does not appear outside of the subproof that introduces it.

Remark 2 (Comparing Tree- and Fitch-Style Proof Systems). In the preceding example we have presented

in parallel both tree-style and Fitch-style proof systems for the propositional calculus, for first-order logic,

and for the alethic modal logic T. In all three logics, the set of theorems provable in each proof calculus is

the same (though we did not prove this), and we express no preference between the two.

However, several remarks are in order. From a practical standpoint, the tree-style proof systems are

somewhat easier to specify. The Fitch-style systems tend to involve more complicated constraints on

what can and cannot happen within various types of subproofs. The counterpart of these constraints

in the tree-style proofs are those constraints on the applicability of inference rules. However, the Fitch-

style proofs tend to better visually indicate different types of reasoning contexts, e.g., the scope of an

assumption or name, or the extent of a “necessary” context. There is one respect in particular where the

Fitch-style proofs seem superior to the tree-style proofs. Consider the following Fitch-style proof in the

propositional calculus.

1 p

2 p ∨ q ∨I 1

3 p ∨ r ∨I 1

4 (p ∨ q)& (p ∨ r) &I 2, 3

5 p ⊃ ((p ∨ q)& (p ∨ r)) ⊃ I 1–4

The assumption p is cited twice and discharged once. In a tree-style proof, conditional introduction

must be allowed to discharge multiple (identical) assumptions at once, as in the following tree-style proof
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of the same theorem.
[p]

p ∨ q ∨I1
[p]

p ∨ r ∨I1

(p ∨ q)& (p ∨ r)
&I

p ⊃ ((p ∨ q)& (p ∨ r))
⊃ I

This is not a problem, per se, but it does illustrate that the most intuitive way of verbalizing a deduction

may correspond more closely to top-to-bottom reading of a Fitch-style proof than of some reading of the

corresponding tree-style proof.

2.2 Category Theoretic Treatments

Category theory is a mathematical formalism similar to abstract algebra, but is sufficiently general to

formalize a very large number of mathematical constructions. Category theory’s importance, however,

lies not just in its usefulness as a general structure to describe mathematical conceptions, but in the

importance it places on examining the relationships between those structures. The use of category theory

to represent proof systems was pioneered largely by Lambek (1968).2

2.2.1 Deductive Systems

The categorical treatment of logical systems is a natural progression from a treatment of logical system

as deductive systems. Before presenting deductive systems, we first need an auxiliary notion of a

(directed) graph.

Definition 18 (Graph). A graph consists in a collection of objects and a collection of directed edges (or

arrows) among the objects. An arrow f from an object A to an object B is written f : A→ B (Lambek &

Scott, 1988, p. 5).

By imposing two simple constraints on a graph and viewing objects as formulae and arrows as proofs,

we obtain deductive systems.

Definition 19 (Deductive System). A deductive system is a graph which has: an arrow idA : A→ A for

each object A; a composite arrow g ◦ f : A→ C for each pair of arrows f : A→ B and g : B→ C (Lambek

& Scott, 1988, p. 47).

We are often concerned with demonstrating the existence of particular arrows. Toward this end we

2The 1968 paper establishes precedent, but later works, (e.g., Lambek, 1989), are more approachable for the casual reader.



CHAPTER 2. THEORY 29

usually present families of arrows schematically. For instance, the schema

idA : A→ A

represents the class of identity arrows, where A is understood as a variable to be replaced by an object.

Thus by this schema we may demonstrate the existence of an arrow idB : B→ B in a deductive system

with an object B. Similarly, the composition schema

f : A→ B g : B→ C
g ◦ f : A→ C

allows us to demonstrate the existence of an arrow q ◦ p : a→ c given two arrows p : a→ b and q : b→ c.

In identifying arrows with proofs and objects with logical representations, we impose two constraints

on proof systems that were not present before. The first is that there are “identity proofs,” and the second

is that proofs compose.

The requirement that there are “identity proofs” may be somewhat unusual, but is not controversial:

we are usually willing to accept that a formula or sentence is provable from itself.

The requirement that proofs compose may also be somewhat unusual, but only because proof com-

position occurs so frequently and so naturally in both formal and informal reasoning that it may seem

odd to make it explicit. Any time an appeal is made to well-known (and oft-derived) propositions such

as the infinitude of the primes or the irrationality of
p

2, proof composition is occurring. Sometimes

proofs are even “primed” for composition; a computer scientist who proves a result contingent on the

assumption that P 6= NP may implicitly claim that the result is seen to be theorem when composed with a

yet unknown proof of the assumption. Alternatively, a proof that some assumption leads to a proposition

widely supposed to be contradictory is often presented to support the hypothesis that the assumption is

contradictory; this is based on another implicit composition.

Deductive systems make proof composition explicit. If there is a proof g of C from B and f of B from

A, we are typically comfortable asserting the existence of some proof g ◦ f of C from A. That is, for any

proofs g : B→ C and f : A→ C there is a proof g ◦ f : A→ C .

Note that we are now in a position to distinguish different proofs that have the same premise and

conclusion. For instance, given the proofs f : A→ B and g, g ′ : B→ C , both g◦ f : A→ C and g ′◦ f : A→ C

are proofs of C from A, but because we can reference the proofs by name, we can ask questions such as

whether g ′ ◦ f = g ◦ f , that is, whether the proofs are equivalent. Classical logic has traditionally been

concerned with the question of whether one proposition entails another, and has been less concerned with

the proofs that demonstrate the entailment. In a deductive system (and more generally, in categorical

proof theory) proofs, realized as arrows, are themselves objects of study.
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Example 20 (Positive Intuitionistic Propositional Calculus). A deductive system with an object > (truth)

and objects A& B and A⊃ B whenever A and B are objects, along with the following arrows, is a positive

intuitionistic propositional calculus:

A
©A−−→>

A& B
πA,B
−−→ A A& B

π′A,B
−−→ B C

f
−→ A C

g
−→ B

C
〈 f ,g〉
−−→ A& B

C & A
h
−→ B

C
h∗
−→ A⊃ B

(A⊃ B)& A
εA,B
−→ B

From top to bottom, and left to right, these arrows six arrow types correspond to the six inference rules of

the positive intuitionistic propositional calculus: (i) truth (i.e., >, is provable from any proposition A);

(ii) A is provable from A& B; (iii) B is provable from A& B; (iv) given proofs of A and B from C , there is a

proof of A & B is also provable from C; (v) given a proof of B from C & A, there is proof of A⊃ B from

C; (vi) B is provable from (A⊃ B)& A. Common logical results can be reproduced using the deductive

system. For instance, the following is a demonstration that B & A is provable form A& B, i.e., that there is

an arrow A& B→ B & A, particularly, 〈πA,B,π′A,B〉.

A& B
πA,B
−−→ A A& B

π′A,B
−−→ B

A& B
〈πA,B ,π′A,B〉
−−−−−−→ B & A

As another example, we may show the associativity of conjunction. For brevity, we abbreviate (A&B)&C

with φ.

φ
πA&B,C
−−−→ A& B A& B

πA,B
−−→ A

φ
πA,B◦πA&B,C
−−−−−−→ A

φ
πA&B,C
−−−→ A& B A& B

π′A,B
−−→ B

φ
π′A,B◦πA&B,C
−−−−−−→ B φ

π′A&B,C
−−−→ C

φ
〈π′A,B◦πA&B,C ,π′A&B,C 〉
−−−−−−−−−−−→ B & C

(A& B)& C
〈πA,B◦πA,B ,〈π′A,B◦πA&B,C ,π′A&B,C 〉〉
−−−−−−−−−−−−−−−−−−→ A& (B & C)

(2.1)

We will reference the schema from (2.1) again later, and call it αA,B,C . That is,

αA,B,C : (A& B)& C → A& (B & C)

Remark 3 (Concerning Notation). As seen in (2.1), the full notation for arrow labels can quickly become

very dense. As a matter of notational convenience, we will often leave subscripts implicit when they are

clear from context (e.g., π: A& B→ A rather than πA,B : A& B→ A), and will often write the composition
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g ◦ f as g f . In order to conserve vertical space, we will often use f : A→ B in preference to

A
f
−→ B

This makes the derivation of some arrows clearer. For instance, leaving the derivation and subscripts of

ππ: (A& B)& C → A implicit, the derivation of (2.1) becomes:

ππ: (A& B)& C → A
π′π: (A& B)& C → B π′ : (A& B)& C → C

〈π′π,π′〉: (A& B)& C → B & C
αA,B,C ≡ 〈ππ, 〈π′π,π′〉〉: (A& B)& C → A& (B & C)

(2.2)

2.2.2 Categories

Deductive systems provide a consistent notation for logical systems, and have the benefit of asking us

to consider the possible equivalence of proofs, and requiring us to consider the composition of proofs.

However, given the existence of identity arrows as well as a proof composition operator, there are certain

equivalences that we might like to take for granted. Particularly, we might like to know that identity

proofs actually behave as identities for composition. Additionally, composition in many applications is

associative, and it would be reasonable to consider whether proof theory is such an application. Imposing

these requirements, we obtain categories.

Definition 21 (Category). A category is a deductive system in which the following equivalences hold for

all f : A→ B, g : B→ C , and h: C → D.

(h ◦ g) ◦ f = h ◦ (g ◦ f ) idB ◦ f = f = f ◦ idA

That is, composition is associative and identity arrows are identities.

2.2.2.1 Mathematical Structures as Categories

One of the most significant benefits of working with logical systems as categories is that there is a large

literature within category theory on various topics in mathematics, including logic. The abundance of

categorical literature is a result of the widespread applicability of category theory to various domains.

Many mathematical structures can be naturally represented as categories, and categorical results are

easily transferred between these domains.

Example 22 (Preorders). A set P with a relation ≤ is a category whose objects are the elements of P

and which has an arrow A→ B if and only if A≤ B and which has at most one arrow from any object

to another. To confirm that a preorder is, or gives rise to, a category, we must check that it has identity

arrows and composition, and that composition behaves properly with respect to the identity arrows. For
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each object A, since A≤ A there is an arrow from A→ A, and since there is at most one arrow from any

one object to another, this arrow must be taken as idA. For any arrows f : A→ B and g : B→ C , we must

consider whether there is a composite g ◦ f . The existence of f indicates that A≤ B, and of g that B ≤ C .

Since ≤ is transitive, it must be that A≤ C , and thus that there is an arrow A→ C . Since this is the only

such arrow, it will be taken as the composite. Similar reasoning shows that the only candidate for idB ◦ f

and for f ◦ idA is f , and so composition respects identities. To show that composition is associative, it

suffices to note that where the composite (h ◦ g) ◦ f : A→ D is defined (for an appropriate h: C → D), it

is the only A→ D arrow and so must be h ◦ (g ◦ f ) as well.

Example 23 (Natural Numbers). The natural numbers give rise to a category N with a single object and

whose arrows are the natural numbers 0, 1, . . . with addition + as the composition operator. This case is

an interesting contrast with that of preorders, in that for a preorder 〈P,≤〉, the objects of the category

were simply the elements of P, but here there is just one object in the category, but many arrows. Yet the

process for checking whether the resulting structure is a category is the same. We denote the single object

by ∗ and observe that to each natural number n there is a corresponding arrow n: ∗ → ∗. While every

arrow has ∗ as its source and target, taking + as the composition operator, we see that id∗= 0, since 0 is

the identity for +. Similarly, we know that + is associative and total.

Example 24 (Deductive Systems as Categories). Deductive systems give rise to categories when the

appropriate identities are imposed. This example points out that we can obtain a category by taking a

deductive system and imposing an equivalence relationship on its arrows such that the identity arrows

are identities with respect to composition and such that the composition operator is associative. What

this means in practice is that given a deductive system, we no longer consider individual proofs of one

formula from another, but rather equivalence classes of proofs. In the example shown so far (the positive

intuitionistic propositional calculus) these equivalence classes are not particularly interesting. However,

more significant results arise when other categorical notions are brought to bear on categories obtained

from deductive systems.

2.2.2.2 Categorical Constructions

The power of category theory comes not only from providing a convenient and uniform way of representing

many different types of mathematical structures, but also in giving a framework in which to define common

mathematical structures at a sufficiently abstract level. When mathematical constructions are expressed

using category theory, they can be immediately realized in numerous categories and categorical results

are immediately applicable.
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Example 25 (Products). A great number of mathematical structures have a notion of product and many

of these can be unified by treating the mathematical structure as a category and examining the more

abstractly defined categorical product.

A product of objects A and B is an object A× B with arrows πA,B : A× B→ A and π′A,B : A× B→ B such

that for any arrows f : D→ A and g : D→ B there is a unique arrow 〈 f , g〉, such that f = πA,B ◦ 〈 f , g〉

and g = π′A,B ◦ 〈 f , g〉.

D

A A× B B

f g

πA,B π′A,B

〈 f , g〉

The figure here, called a commutative diagram, is common in category theory and serves to identify a

number of arrows. In commutative diagrams, all paths from one object to another denote the same arrow.

Thus in this figure, f = πA,B ◦ 〈 f , g〉 and g = π′A,B ◦ 〈 f , g〉. That an arrow, in this case 〈 f , g〉, is drawn with

a dashed line indicates that it is unique. That is, the diagram asserts that (for every pair of arrows f and

g) there is a unique arrow 〈 f , g〉 such that f = πA,B ◦ 〈 f , g〉.

We can now consider examples of products in various categories.

Example 26 (Preorders). In preorders, products are greatest lower bounds. If an object C is such that

there are arrows x : C → A (so C ≤ A) and y : C → B (so C ≤ B) then C is a lower bound of A and B. Then

the product A×B is a lower bound of A and B by virtue of the projections p1 and p2. The requirement that

for any D with arrows f : D→ A and g : D→ B there is a unique arrow 〈 f , g〉: D→ A× B ensures that

A× B is the greatest lower bound of A and B. Suppose that some C ( 6= A× B) is the greatest lower bound

of A× B. Then there are arrows f ′ : C → A and g ′ : C → B and thus a unique arrow 〈 f ′, g ′〉: C → A× B,

but this would mean that C ≤ A× B. Since A× B is also a lower bound, we have A× B ≤ C . But then,

contrary to assumption, A× B = C . Then A× B is the greatest lower bound of A and B.

Example 27 (Sets). In the category of sets (objects are sets and arrows are set functions), the Cartestian

product of sets S and T is a categorical product of S and T . We say “a categorical product” rather than

“the categorical product,” as every set isomorphic to S × T is a categorical product of S and T .

Given an isomorphism i : X → S × T , the projections of X as a product of S and T are simply

πA,B i : X → A and π′A,B i : X → B. For any arrows f : U → A and g : U → B, i〈 f , g〉 is unique because i is

an isomorphism. Thus X is also a categorical product of S and T .

Example 28 (Logics). In categories arising from deductive systems for logics with conjunctions, it is

common to impose an equivalence relation on proofs that make conjunctions categorical products. A
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product of formulae A and B is the formula A&B with arrows πA,B : A&B→ A (left conjunction elimination)

and π′A,B : A & B → B (right conjunction elimination) such that if f and g are proofs of A and B from

some formula D, there is a unique proof 〈 f , g〉 of A& B from D. What is actually happening here is the

observation that logical conjunction seems like a kind of product, and we adopt the necessary proof

equivalences to make it so. Typically the arrow 〈 f , g〉 is understood as the proof that combines the results

of the proofs f and g using conjunction introduction. Accepting A& B as the product of A and B has the

effect of equating the following proofs.

A& (B & C)
B & C

&ER

B
&EL

A& (B & C)
A

&EL

A& (B & C)
B & C

&ER

B
&EL

A& B &I

B
&ER

The equivalence is reasonable, since the proof on the right derives B, then uses conjunction introduction

to derive A& B, and then immediately uses conjunction elimination to re-derive B. The proof on the left

might be understood as a normalized form of the proof on the right. This example highlights the point

that arrows in logic categories are equivalence classes of proofs.

Remark 4 (Categorical Constructions are Unique up to Isomorphism). As demonstrated in the category

of sets and in the categorical presentation of logical systems, categorical products are unique up to

isomorphism. This is typical of categorical definitions; constructions are often specified up to isomorphism.

2.2.2.3 Relationships Between Categories

Categories obtained from deductive systems provide a simple, yet powerful, mechanism for representing

logical systems, and many of the common points of interest in logics can be expressed categorically. The

language of categories, then, seems to fulfill our first requirement, that of representing logical systems.

The second requirement, that of representing the interactions between logical systems and the rela-

tionships among these interactions, will now be addressed through functors and natural transformations.

Functors, or category homomorphisms, provide a way of understanding relationships between logical sys-

tems represented as categories, and natural transformations provide a way of understanding relationships

between functors.

Definition 29 (Functor). A functor F : C →D is a mapping of C objects and arrows to D objects and

arrows such that for any C arrows f : A→ B and g : B→ C , there are D objects and a D arrow such that:

F( f ): F(A)→ F(B)
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and which respects identity and composition:

F(idA) = idF(A)

F(g ◦C f ) = F(g) ◦D F( f )

It is illustrative to consider the realization of functors between categories that represent logical systems.

Since objects in these categories are formulae, the object mapping of a functor is a formula translation.

Similarly, since arrows are proofs, the arrow mapping of a functor is a proof translation. Formulae

translations have long been used in the study of logics, particularly in examining their expressiveness,

and proof translations have, though to a lesser extent, also been significant.

Example 30 (Relating Classical and Intuitionistic Propositional Logic). Prawitz & Malmnäs (1968) consider

the relationships between minimal, intuitionistic, and classical propositional logics, and develop several

formulae translations in their study of interpretability and interpretability with respect to derivability.

A logical system S1 is said to be interpretable in a logical system S2 by a formula translation F when

`S1
A if and only if `S2

F(A).

S1 is said to be interpretable with respect to derivability by F just in case

Γ `S1
A if and only if F(Γ ) `S2

F(A),

where F(Γ ) is the set {F(γ) | γ ∈ Γ }.

Prawitz & Malmnäs define a translation ∼∼ by letting A∼∼ be the formula that results from inserting

two negation signs before each part (roughly, subformula) of A. They then prove that classical logic is

interpretable with respect to derivability in intuitionistic logic and in minimal logic:

Γ `C A if and only if Γ∼∼ `I A∼∼ (2.3)

Γ `C A if and only if Γ∼∼ `M A∼∼ (2.4)

We need not reproduce their entire proof here; it suffices to point out that their proof is based on examining

the relationships between intuitionistic proofs and classical proofs, just as they did:

By observing, first, that the rule for eliminating double negation is intuitionistically valid when

the conclusion is a negation, and, second, that every intuitionistic inference rule continues

to be intuitionistically valid after the ∼∼-translation, one immediately obtains a proof of

Theorem A. (Prawitz & Malmnäs, 1968, p. 220)

The approach taken by Prawitz & Malmnäs is rigorous, but ad hoc in the sense described in § 1.3.1.
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To demonstrate the simplicity of the category theory-based approach, we recast their Theorem A in

categorical terms.

First, the derivability relation { B1, . . . , Bn } ` A relates sets of formulae with individual formulae, but

when logical systems are represented as categories, there are no sets of formulae, so we must understand

the relationship ` A to stand for the existence of an arrow>→ A, the relationship {B } ` A for the existence

of an arrow B→ A, and the relationship {B1, . . . , Bn } ` A for the existence of an arrow B1 & · · ·& Bn→ A.

The definition of interpretability and interpretability with respect to derivability must remain the same,

but now (2.3) can be proved in a somewhat more general fashion.

Proof. Let I be the category whose objects are formulae freely generated from propositional variables and

the boolean connectives, and whose arrows are generated by schemata for intuitionistically valid inference

rules. Let C be the category whose objects are the same as I’s and whose arrows are generated by schemata

for intuitionistically valid inference rules as well as a schema for double negation elimination. Let I′ be the

category whose objects are formulae freely generated from the double negation of propositional variables

and the boolean connectives, and whose arrows are generated by intuitionistically valid inference rule

schemata. Note that every object (arrow) of I′ is also an object (arrow) of I.

There are functors F : C→ I′ and F ′ : I′→ C whose formulae mappings are ∼∼ and the its inverse

(∼∼ is readily verified to be invertible) and whose arrow mappings are the proof translations described

by Prawitz & Malmnäs. The existence of these functors show that Γ `C A implies F(Γ ) `I′ F(A) and vice

versa. Then C is interpretable in I′ by F .

Slightly more work is needed to show that F(Γ ) `I F(A) implies F(Γ ) `I′ F(A), but our purpose here

has been only to demonstrate that earlier ad hoc approaches fit within the categorical framework.

Example 31 (A Deduction Theorem for Propositional Calculus). Lambek & Scott (1988, pp. 51–52)

present a deduction theorem for the positive, propositional, intuitionistic calculus using a categorical

representation of the calculus; specifically, the category that arises from the deductive system given in

Example 20. In traditional treatments, the deduction theorem states that if a sentence ψ is provable using

the assumptions Γ ∪ {φ }, then the conditional φ ⊃ψ is provable using just the assumptions Γ , i.e., that

Γ ∪ {φ } `ψ implies Γ ` φ ⊃ψ.

Categorically, the result is that if an arrow φ(x): B→ C can be demonstrated by positing the existence

of an arrow x : >→ A in a category L , then there is a proof of an arrow f : A& B→ C which does not

depend on x .
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Table 2.1: Lambek & Scott (1988) partition the arrows of L [x : >→ A] into five classes and map each
B → C arrow of L [x] to an A & B → C arrow of L . The notation αA,B,C used in the last case was
introduced in Example 20 (p. 30) in Equation (2.1).

Arrow in L [x] Arrow in L

k : B→ C (an arrow in L ) kπ′ : A& B→ C
x : >→ A π: A&>→ A
〈ψ(x),χ(x)〉: B→ C ′ & C ′′ 〈κ(ψ(x)),κ(χ(x))〉: A& B→ C ′ & C ′′

χ(x) ◦ψ(x): B→ C κ(χ(x)) ◦ 〈πA,B ,κ(ψ(x))〉: A& B→ C
ψ(x)∗ : B→ C ′ ⊃ C ′′ (κ(ψ(x) ◦αA,B,C ′))∗ : A& B→ C ′ ⊃ C ′′

Table 2.2: The arrow mapping for the functor K maps each B → C arrow in L [x] to a A & B → A & C
arrow in L . Since K is a functor, the fourth case, composition, is forced. The first case covers identity
arrows, and requires that conjunction is a product in order that 〈πA,B, idB ◦π′A,B〉= idA&B.

Arrow in L [x] Arrow in L

k : B→ C (an arrow in L ) 〈πA,B , k ◦π′A,B〉
x : >→ A 〈idA, idA〉 ◦π′>,A

〈ψ(x),χ(x)〉: B→ C ′ & C ′′ 〈πA,B , 〈π′A,C ′ ◦ K(ψ),π′A,C ′′ ◦ K(χ)〉〉
χ(x) ◦ψ(x) K(χ(x)) ◦ K(ψ(x))
ψ(x)∗ : B→ C ′ ⊃ C ′′ 〈πA,B , (π′A,C ′′ ◦ K(ψ(x)) ◦αA,B,C ′)〉

More formally, let L be a category arising from the deductive system given in Example 20 (p. 30)

(i.e., whose arrows are generated by those schemata, and for which the appropriate equations on arrows

hold) for some given set of propositional variables. Then for a propositional variable A, let L [x : >→ A]

(or just L [x]) be the category like L but with an additional arrow and the additional arrows arising

from it through the arrow schemata. The categorical version of the deduction theorem says, then, that for

every arrow φ(x): B→ C in L [x : >→ A], there is an arrow f : A& B→ C in L . Lambek & Scott prove

this directly using the case analysis shown in Table 2.1.

While the arrow mapping κ given in Table 2.1 maps each arrow of L [x] to an arrow of L , κ does not

determine a functor. Indeed, in the fourth case κ maps χ(x) ◦ψ(x): B→ C to κ(χ(x)) ◦ 〈πA,B,κ(ψ(x))〉,

but a functor would respect composition and map to κ(χ(x)) ◦ κ(ψ(x)). Another way to perceive that κ

does not determine a functor is to note that κ does not map identity arrows to identity arrows since κ

maps every B→ B arrow in L [x] to an A& B→ B arrow in L .

However, we can define a formula and arrow mapping K similar to κ which is, in fact, a L [x]→L

functor. First, K takes each formula B of L [x] to A& B. Before defining the arrow mapping, we note that

K will take each arrow φ(x): B→ C ofL [x] to an arrow K(φ(x)): A& B→ A& C . By virtue of the arrow

π′ : A& C → C , we have that π′ ◦ K(φ(x)): A& B→ C , and thus that using the functor K we can identify

an A& B→ C arrow in L for each B→ C arrow in L [x]. K ’s arrow mapping is given in Table 2.2.

Given the existence of a functor from L [x] to L with an object mapping that takes φ to A&φ, the
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deduction theorem is a simple corollary: For anyL [x] arrow f : B→ C , there is an arrow π′A,C ◦K( f ): A&

B→ C in L .

2.2.2.4 Relationships between Functors

There are many relationships that can hold between formula translations. For instance, one translation

may preserve more information than another, or one might be more general than another. Amongst proof

translations, too, there are interesting relationships. For instance, one proof translation may preserve

more proof structure than another. Functors are the categorical version of formula and proof translations,

but it is natural transformations that capture the relationships that hold between functors.

Definition 32 (Natural Transformation). A natural transformation η: F → G between two C → D

functors is a collection of D arrows indexed by C elements such that the following diagram commutes.

F(A) G(A)

F(B) G(B)

F( f ) G( f )

ηA

ηB

While the definition of natural transformations is short, it is worth examining in closer detail. The

objects F(A), F(B), G(A), and G(B) in the commutative diagram are all objects in the category D where F

and G are C →D functors. Similarly, both F( f ) and G( f ) are D arrows. Finally, the arrows ηA and ηB,

then, must also be D arrows. A natural transformation, then, is a collection of D arrows that relate the

image of C objects and arrows under C →D functors. In categories for logics, all these objects are D

formulae and these arrows are D proofs. A natural transformation for logic categories, then, is a collection

of D proofs indexed by C formulae.

Example 33 (Weakening). Classical logics, and many non-classical logics, are monotone: the addition of

additional premises does not invalidate any conclusions drawn from previous accepted premises. (There

are logics which do not have this property; defeasible logics are an important example in which arguments

can be defeated by competing arguments (Pollock, 1987, 1992). More generally, such logics, including

default logics and abductive logics, are called non-monotonic.)

In our treatment of logics as categories, we might express the monotonicity of a logic as the existence

of a particular class of natural transformations. We consider two functors. The first is the identity functor

idC : C → C which maps each C object and arrow to itself. That idC preserves identity arrows and

compositions is a trivial observation. The second is the functor A×−: C →C which maps each object X

to the product A× X , and each arrow f : X → Y to the arrow idA× f : A× X → A× Y . Recall that idA× f
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is shorthand for the product arrow 〈idAπ, f π′〉. We should verify that A×− preserves composites and

identities. Identities are preserved:

A×−(idX ) = idA× idX

= 〈idAπA,X , idXπ
′
A,X 〉

= 〈πA,X ,π′A,X 〉

= idA×X

= idA×−(X )

Composites are preserved:

F(g f ) = idA× g f

= idAidA× g f

= (idA× g) ◦ (idA× f )

= (A×−(g)) ◦ (A×−( f ))

Now we may observe that the following diagram commutes:

A× X X

A× Y Y

idA × f f

π′A,X

π′A,Y

This is precisely the required diagram to show that ηX = π′A,X are the components of a natural transfor-

mation A×− → idC . Then we may say that if, for every C object A there is a natural transformation

η: A×−→ idC with component π′A,X at X , then C is monotonic.

This example is not complex, since the functors and natural transformations involved are relatively

simple; but it illustrates the way in which simple categorical constructions capture significant properties of

logical systems. Indeed, we observe that any logical system represented by a category where the addition

of an assumption is captured by a categorical product must be monotonic.

2.2.3 Denotational Proof Languages

Arkoudas (2000) developed and introduced denotational proof languages (DPLs) as a family of languages

for proof construction and computation (for proof search) with a well-defined denotational semantics.

Programs in denotational proof languages are evaluated with respect to an assumption base to produce a
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value, their denotation. Denotational proof languages are united by a common underlying formalism, the

λµ-calculus, an extension of the familiar λ-calculus. In practice, denotational proof languages provide

simple, concise, and elegant proof-construction environments.

Before delving into the technical foundations upon which denotational proof languages are built, we

first consider a small proof in a simple DPL.

Example 34 (Syntax of Classical Natural Deduction, CND). A proof in a DPL for classical natural deduction,

CND, of P & Q ⊃Q & P:
assume P & Q in

begin
right-and P & Q;
left-and P & Q;
both Q, P

end

We begin by considering the body within the top level assume P & Q in . . . form, that is, the begin . . .

end block. The begin . . . end pair serves to group its contents as a single deduction. The three inner

deductions, delimited by the composition operator “;”, are evaluated in sequence. Each deduction in the

proof is evaluated with respect to an assumption base. The first deduction, right-and P & Q is evaluated

and, if the proposition P &Q is in the current assumption base, produces the right conjunct, Q. The second

deduction, left-and P & Q, when evaluated in an assumption base containing P & Q, produces the left

conjunct, P. The third deduction, both Q, P, when evaluated in an assumption base containing Q and P,

produces the conjunction Q & P. The composition operator between two deductions has the effect that

after the first is evaluated with respect to a particular assumption base, β , to produce some result, φ, the

second deduction is evaluated with respect to β extended with φ, i.e., β ∪ {φ }.

Let us consider the evaluation of the entire begin . . . end deduction in an assumption base containing

the proposition P & Q, say β ∪ { P & Q }. The evaluation of right-and P & Q with respect to β ∪ { P & Q }

produces Q. Due to the composition, the next deduction, left-and P & Q, is evaluated in the assumption

base β ∪ { P & Q, P } and produces the proposition Q. The third deduction, both Q, P, is evaluated in

the assumption base which incorporates this new result, i.e., β ∪ { P & Q,Q, P }, and so produces the

conjunction Q & P. Then the denotation of the begin . . . end deduction, when evaluated in an assumption

base containing P & Q, is the proposition Q & P.

The evaluation semantics of assume P & Q in . . . is only slightly more complicated. In general, the

evaluation of assume φ in D in an assumption base β is the proposition φ ⊃ ψ when the evaluation

of D in β ∪ {φ } produces ψ. Thus, in the present case, the evaluation of the assume . . . form in an

assumption base β will evaluate the begin . . . end block in β ∪ { P & Q } which will produce Q & P, and

the final result is the conditional P & Q ⊃Q & P.



CHAPTER 2. THEORY 41

Theλµ-calculus provides a common foundation for denotational proof languages, and is an extension of

the λ-calculus, which is often used as a foundation for computation (and thus, programming languages).

The λµ-calculus extends the λ-calculus by adding a syntactic category for deductions, as well as an

additional type of expression, that of methods, i.e., abstractions over deductions. The syntax of the

λµ-calculus is straightforward. The syntax also includes provisions for special deductive forms.

Remark 5 (Concerning other λµ-calculi). Another extension of the λ-calculus called the λµ-calculus

was introduced earlier in an article by Parigot (1992), λµ-calculus: an algorithmic interpretation of

classical natural deduction. Both are related to deduction and extend the λ-calculus, but aside from

these similarities, they are unrelated, distinct formalisms. In later publications, Arkoudas uses the name

λφ-calculus to avoid confusion (Arkoudas, 2001a, p. 1, footnote 1).

Definition 35 (λµ-calculus syntax). In the following, D ranges over Ded, the class of deductions, E over

Exp, the class of expressions, and M and N over Phr, the class of phrases (a phrase is a deduction or an

expression, i.e., Phr= Ded∪ Exp).

E ::= c | I | µ
−→
I .D | λ

−→
I .E | app(E,

−→
M )

D ::= dapp(E,
−→
M ) { | kwd1(

−→
Ξ1) | · · · | kwdn(

−→
Ξn) }

M ::= E | D

Syntactically, the λµ-calculus is very similar to the pure λ-calculus. Abstractions over deductions,

called methods, are formed using µ in the same way that functions are abstracted from expressions using

λ. Function application is written as app(E,
−→
M ) as opposed to the more conventional (E

−→
M ), but this

notation is a better parallel with method application which is written as dapp(E,
−→
M ).

The semantics of the λµ-calculus is denotational whereas the usual semantics for the λ-calculus is

given by a number of reduction rules. In the denotational semantics, a phrase M is evaluated with respect

to an assumption base β to produce a value v. That M produces v when evaluated “in” or “under” the

assumption base β is denoted by

β ` M ; v

The semantics for the (pure) λµ-calculus are given by the rules presented in Figure 2.2. Most of the

rules specify behavior similar to the λ-calculus, but several rules (viz.: R7, R10, R11, and R12) provide

semantics particularly important for proof languages. To specify a useful system with the λµ-calculus, it

remains to specify a set of constants which is partitioned into a set of primitive methods, a set of primitive

functions, and a set of primitive values. A subset of the primitive values are designated as sentences, and
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β ` app(λ
−→
I .E,

−→
M ); E[

−→
M /
−→
I ]
[R1]

β ` dapp(µ
−→
I .D,

−→
M ); D[

−→
M /
−→
I ]
[R2]

β ` E ; E′

β ` app(E,
−→
M ); app(E′,

−→
M )

[R3]
β ` E ; E′

β ` dapp(E,
−→
M ); dapp(E′,

−→
M )

[R4]

β ` Mi ; M ′i
β ` app(E, M1, . . . , Mi , . . . , Mk); app(E, M1, . . . , M ′i , . . . , Mk)

[R5]

β ` Ei ; E′i
β ` dapp(E, M1, . . . , Ei , . . . , Mk); dapp(E, M1, . . . , E′i , . . . , Mk)

[R6]

β ` Di ; S β ∪ {S } ` dapp(E, M1, . . . , S, . . . , Mk); N

β ` dapp(E, M1, . . . , Di , . . . , Mk); N
[R7]

β ` E ; N

β ` λ
−→
I .E ; λ

−→
I .N

[R8]
β ` D ; N

β ` µ
−→
I .E ; µ

−→
I .N

[R9]

β ` D ; S

β ∪ β ′ ` D ; S
[R10]

β ` M1 ; M2 β ` M2 ; M3

β ` M1 ; M3
[R11]

{S } ` dapp(claim, S); S
[R12]

Figure 2.2: Rules specifying the semantics of the λµ-calculus. Most rules ensure that λ and µ abstractions
behave in the “usual” way, e.g., R1–R6. R7 is special in that it ensure that deduction applications are
executed in an assumption base that has been extended with the results of any deductive arguments. R12
specifies the semantics of the primitive method claim.

assumption bases are sets of sentences. The semantics of primitive methods must be specified on a case

by case basis, and while there are certain constraints placed on primitive methods, we need not concern

ourselves with them here.

Given the general semantics of the λµ-calculus, we can now examine the specification of a particular

denotational proof language as a λµ-system. We shall examine the DPL introduced in Example 34, a

natural deduction proof system for classical propositional calculus.

Example 36 (Semantics of Classical Natural Deduction, CND). A λµ-system is specified by fixing a set of

primitive methods, primitive functions, and the primitive values (including sentences) of that system. The

primitive values of CND are the sentences built up from propositional variables and boolean connectives

in the usual way. CND has no primitive functions. CND has one special deductive syntax, assume, and a

number of primitive methods. The semantics of assume and the primitive methods are given in Figure 2.3.

(Note that we are really presenting two versions of CND. The first, given in Example 34, is to be seen as

syntactic sugar for the second, given here. Alternatively, one might view the latter as a sort of assembly to

which the former is compiled.)
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β ∪ { P ⊃Q, P } ` dapp(modus-ponens, P ⊃Q, P); Q

β ∪ { P ⊃Q,∼Q } ` dapp(modus-tollens, P ⊃Q);∼Q∼ P

β ∪ {∼∼ P } ` dapp(double-negation,∼∼ P); P

β ∪ { P1, P2 } ` dapp(both, P1, P2); P1 & P2

β ∪ { P1 & P2 } ` dapp(left-and, P1 & P2); P1

β ∪ { P1 & P2 } ` dapp(right-and, P1 & P2); P2

β ∪ { P1 } ` dapp(left-either, P1, P2); P1 ∨ P2

β ∪ { P2 } ` dapp(right-either, P1, P2); P1 ∨ P2

β ∪ { P1 ∨ P2, P1 ⊃Q, P2 ⊃Q } ` dapp(cases, P1 ∨ P2, P1 ⊃Q, P2 ⊃Q); Q

β ∪ { P1 ⊃ P2, P2 ⊃ P1 } ` dapp(equivalence, P1 ⊃ P2, P2 ⊃ P1); P1↔ P2

β ∪ { P1↔ P2 } ` dapp(left-iff, P1↔ P2); P1 ⊃ P2

β ∪ { P1↔ P2 } ` dapp(right-iff, P1↔ P2); P2 ⊃ P1

β ∪ { P,∼ P } ` dapp(absurd, P,∼ P); false

β ∪ { P } ` D ; Q
β ` assume(P, D); Q

Figure 2.3: The semantics of CND’s primitive methods and special deductive form assume.

Example 37 (Athena, Integrating Computation with DPLs). One of the stated benefits of using DPLs was

the ability to integrate computation with deduction. The CND language has no primitive functions defined

for computation, and so cannot demonstrate these features, so we turn our attention to Athena (Ark-

oudas, 2005a). Athena is a DPL for many-sorted first-order logic, and has a Lisp-like syntax. Most of

Athena’s primitive methods are shared with CND, and we need not cover all the details of Athena here.

First, we consider a straightforward Athena proof of the conditional (A& (B & C)) ⊃ (C & A). The proof

uses the left-and, right-and, and both rules that we have already described, as well as an assume form.

In Athena, seq takes the place of begin . . . end pairs.

(assume (and A (and B C))
(seq
(!left-and (and A (and B C)))
(!right-and (and A (and B C)))
(!right-and (and B C))
(!both C A)))

=>
(if (and A (and B C))

(and C A))

In this proof, each reasoning step is explicit, and there are no extra steps taken. The use of seq to

sequence proof steps makes the proof more readable, but it also increases the scope in which intermediate
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derivations can be cited. A more compact version would be:

(assume (and A (and B C))
(!both (!right-and (!right-and (and A (and B C))))

(!left-and (and A (and B C)))))
=>
(if (and A (and B C))

(and C A))

A more generally applicable proof strategy that could have been used to prove this same result would

use the method decompose. decompose takes as arguments a formula and a method. Using left-and

and right-and recursively, decompose infers all the conjunctive subformulae of its first argument and

then applies the method in the resulting assumption base.

The proof using the decompose method might be implemented as the following Athena proof.

(assume (and A (and B C))
(!decompose (and A (and B C))

(method ()
(!both C A))))

=>
(if (and A (and B C))

(and C A))

The behavior of decompose is as follows. When decompose is called with arguments f , a formula,

and m, a method of no arguments, it first examines f . If f is not a conjunction, then decompose simply

invokes m with no parameters. Otherwise, f should be in the assumption base, and left-and is used

to extract its left conjunct, l. decompose is then called recursively with l and a new method that will

(eventually) infer the f ’s right conjunct and invoke m. The method decompose can be implemented

simply:
(define (decompose formula M)
(dmatch formula
((and P Q)
(!decompose (!left-and formula)

(method ()
(!decompose (!right-and formula)

M))))
(_ (!M))))

In this example, this has the effect of evaluating the method µ().dapp(both, C , A) in an assumption

base containing A& (B & C), A, B & C , B, and C . Since the assumption base contains C and A, the method

produces the sentence C & A, and the entire proof produces (A& (B & C)) ⊃ (C & A).

It is worth noting that both of the proofs given in the preceding example produce the same formula

under all assumption bases. Yet their text is quite different, and their observational equivalence is not

apparent unless one is familiar with the definition of decompose. An even more significant difference is

that the second proof performs some “extra” work. This is not necessarily bad, in and of itself (indeed, any

proof-search automation is bound to perform some unnecessary work), but it is a significant difference,
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and the DPL framework makes no provision for determining which work was actually useful.

2.3 Summary

We have reviewed a number of approaches to representing logical systems, including both traditional

approaches oriented mainly toward the construction of proofs and deductions (axiomatic and natural-

deduction proof systems) as well as approaches that attempt to generalize the idea of logical systems and

make them an object of study unto themselves (category-theory-based approaches). We have also seen an

approach (denotational proof languages) that uses a powerful formalism to generalize the notions of proof

language and computation (the λµ-calculus) while still providing a convenient notation for manually

constructing proofs and automated deductive procedures. In the sequel, we shall focus primarily on these

latter two formal systems (the category theoretic treatment of logics, and denotational proof languages)

as we attempt to combine the benefits of the category-theoretic approach (a rigorous and principled way

of specifying logical systems and the interactions between them) and of denotational proof languages

(convenient proof construction and support for proof automation), to order to achieve the goals of our

problem statement.



Chapter 3

Results

In this chapter we describe and define a family of categorical DPLs, discuss their implementation, and

demonstrate their use, including the ways in which interoperability between logics occurs. It is precisely

when logical systems can be implemented and connected in this way that we call them fluid logics. In

this initial investigation, we implement some of the structures used in logics that are available in the

Slate (Bringsjord et al., 2007, 2008) courseware. We also implement and demonstrate two fluid logics and

mappings between them, namely the mapping from a logical system with an additional hypothesis to the

logical system without (this is a form of the deduction theorem), and the mapping from a natural-deduction

proof system to an axiomatic system.

3.1 Overview

We originally envisioned that the implementation of fluid logics via a framework for categorical denota-

tional proof languages would encompass a significant variation or departure from the λµ-calculus that

underlies traditional denotational proof languages as presented by Arkoudas (2000, chapter 8). After some

initial experimentation, however, it became clear that a traditional denotational proof language in which

the “propositions” were the arrows of a category, along with a powerful macro system, provides the desired

features of a true “categorical denotational proof language.” As such, we implemented a λµ-calculus

interpreter in the style of Scheme (Sussman & Steele, 1998; Kelsey et al., 1998). The resulting language is

very similar to Arkoudas’s Athena (Arkoudas, 2005a), but provides a define-macro similar to Common

Lisp’s defmacro, allowing many of the forms that Arkoudas described as syntactic sugar, including

advanced features such as pattern matching, to be implemented directly in the language as macros. To

support interoperability with Java, we also added support for the JScheme’s JavaDot notation (Anderson

46
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et al., 2001, § Java Access).

3.2 Implementing the λµ-Calculus

We implemented the λµ-calculus using Java as a host language. A detailed description of the language

syntax and semantics is given in Appendix A, but readers having some familiarity with Athena, Scheme,

or Common Lisp, will probably understand most of the following sections. The implemented system is

not a unique DPL, but rather the underlying framework in which DPLs can be constructed. While our

primary concern is with categorical DPLs for fluid logics, we can just as easily implement traditional DPLs.

We continue by implementing three traditional DPLs, and then moving on to categorical DPLs.

3.3 Implementing Denotational Proof Languages

The current work is aimed at implementing categorical denotational proof languages, but the programming

language at hand is suitable for implementing standard denotational proof languages as well. As such, we

begin with three examples of three standard denotational proof languages. The first is for a simple formal

system introduced by Hofstadter (1979). The second and third are natural deduction and axiomatic

presentations of the propositional calculus.

Example 38 (Hofstadter’s MIU-system). In his modern classic, Gödel, Escher, Bach: an Eternal Golden

Braid, Hofstadter (1979) introduces his readers to axiomatic proof systems though the simple MIU-system.

Strings of the system are generated from the three-letter alphabet, M, I, and U. Viewed as a proof system,

there is one axiom, MI, and there are four inference rules. Intuitively, these are as follows. By rule 1,

one may append a U to a string ending in I. By rule 2, one may append Γ to a string M Γ . By rule 3, any

occurrence of III in a string may be replaced by U. By rule 4, any occurrence of UU may be dropped from

a string. Formally, where Γ and Λ stand for any strings of the MIU-system, (including the empty string),

MI
A1

Γ I
Γ IU

R1
M Γ

M Γ Γ
R2

Γ III Γ
Γ UΛ

R3
Γ UUΛ
Γ Λ

R4

The MIU-system can be implemented as a denotational proof language, adopting Java’s Strings as

propositions. Checking the preconditions of the rules is a simple matter of string manipulation. The

axiom A1 and the rules R1 and R2 can be implemented as primitive methods straightforwardly. The

method a1 simply returns the string MI. The method r1 takes a string argument and returns the string

concatenated with U if the string is in the assumption base and ends with I, or throws an appropriate

exception otherwise. Method r2 takes a string argument and returns the string concatenated with the
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string’s suffix after the initial character if the string is in the assumption base and begins with M, and

throws an appropriate exception otherwise.

2 (define-primitive-method (a1)
3 ;; /MI
4 "MI")
5

6 (define-primitive-method (r1 string)
7 ;; xI/ xIU
8 (check
9 ((~ (.contains (ab) string))

10 (error string " is not in the assumption base."))
11 ((~ (.endsWith string "I"))
12 (error string " does not end with I."))
13 (else
14 (.concat string "U"))))
15

16 (define-primitive-method (r2 string)
17 ;; Mx /Mx x
18 (check
19 ((~ (.contains (ab) string))
20 (error string " is not in the assumption base."))
21 ((~ (.startsWith string "M"))
22 (error string " does not begin with M."))
23 (else
24 (.concat string (.substring string 1)))))

In the final two methods we must make an aesthetic decision. For any given string, there may be

multiple positions to which R3 and R4 could be applied. That is, there may be multiple occurrences of

the substring III that R3 could replace with U, or multiple occurrences of the substring UU that R4 could

replace. One approach to implementing these methods has the methods take both the premise and the

desired conclusion as arguments. The methods then check whether the latter is a valid conclusion of the

rule when applied to the former, and that the former is, in fact, in the assumption base. As a matter of

taste and programming style, we prefer an alternative wherein the user is not required to specify (or in

some cases, even know) the conclusion in advance. As such, we implement R3 and R4 as methods that take

an index and a string, and check whether III or UU appear in the string at the specified index, respectively.

28 (define-primitive-method (r3 position string)
29 ;; xIIIy / xUy
30 (check
31 ((~ (.contains (ab) string))
32 (error string " is not in the assumption base."))
33 ((~ (equals "III" (.substring string position (+ 3 position))))
34 (error string " does not contain III at position " position "."))
35 (else
36 (.concat (.substring string 0 position)
37 (.concat "U" (.substring string (+ 3 position)))))))
38

39 (define-primitive-method (r4 position string)
40 ;; xUUy / x y
41 (check
42 ((~ (.contains (ab) string))
43 (error string " is not in the assumption base."))
44 ((~ (equals "UU" (.substring string position (+ 2 position))))
45 (error string " does not contain UU at position " position "."))
46 (else
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47 (.concat (.substring string 0 position)
48 (.substring string (+ 2 position))))))

In fewer than fifty lines we have implemented Hofstadter’s MIU-system! The formal system is so easily

implemented because it is rather simple, and because we were able to leverage Java’s built in string type.

In fact, almost all the Java interoperability in this example was used for interacting with Java’s strings,

which provide endsWith, concat, startsWith, and so on. The other use of Java interoperability is in

(.contains (ab) string). The function ab returns the current assumption base. The assumption

base is a java.lang.Collection, and so implements the contains method. (This, in turn, imposes

the restriction that the objects we use as “propositions” must implement equals in a meaningful way.

Java’s string class implements .equals for string equality. In our logical formulae presented later, we

intern formulae so that Java’s default test of object identity is sufficient.)

Hofstadter presents the following derivation of the string MUIIU, which we will recreate in two

different ways. First. Hofstadter’s derivation:

(1) MI axiom
(2) MII from (1) by rule II
(3) MIIII from (2) by rule III
(4) MIIIIU from (3) by rule II
(5) MUIU from (4) by rule III
(6) MUIUUIU from (5) by rule II
(7) MUIIU from (6) by rule IV

A minimal translation of this proof calls a1 to derive MI, passes the result to r2, and so on, all in

line 54, ultimately deriving MUIIU:

52 (define (example-a)
53 ;; β ` !example-a ; MUIIU
54 (!r4 3 (!r2 (!r3 1 (!r1 (!r2 (!r2 (!a1))))))))

Recall that the semantics of dapp ([R7] from Figure 2.2 (p. 42)) is such that the evaluation of a

method body occurs in an assumption base augmented with any arguments produced by deductions:

β ` Di ; S β ∪ {S } ` dapp(E, M1, . . . , S, . . . , Mk); N
β ` dapp(E, M1, . . . , Di , . . . , Mk); N

[R7]

When example-a is called under assumption base β , a1 is called with β and produces MI. The rightmost

application of r2 is called with MI in the assumption base β ∪ {MI }, and produces MII. Note that the

second application of r2 is not evaluated under the assumption base β ∪{MI,MII }, but rather β ∪{MII }.

This is a result of the semantics of the λµ-calculus rule [R7].

It is possible, however, to sequence the deductions in such a way that at each method application, the

results of all the previous deductions are available in the assumption base. This can be achieved manually

through the careful construction and application of µ-expressions, but also through the more convenient
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dlet* form, as in example-b:

58 (define (example-b)
59 ;; β ` !example-b ; MUIIU
60 (dlet* ((mi (!a1))
61 (mii (!r2 mi))
62 (miiii (!r2 mii))
63 (miiiiu (!r1 miiii))
64 (muiu (!r3 1 miiiiu))
65 (muiuuiu (!r2 muiu)))
66 (!r4 3 muiuuiu)))

When example-b is called in an assumption base β , a1 is called on line 60 in β and produces

MI. The call to r2 on line 61 occurs in the assumption base β ∪MI and produces MII. It is in line 62

that the behavior of example-a and example-b differ. In line 62, r2 is called in the assumption base

β ∪ {MI,MII }. The utility of constructions such as dlet* is in implementing higher-order methods

that evaluate deductions to “extend” an assumption base and then call methods under the extended

assumption base.

Example 39 (Athena’s Propositional Calculus). As an interesting example, we can reproduce the fragment

of the DPL used by Athena for the propositional calculus. We define the actual sentences of the propositional

calculus in Java as data structures. The definition is fairly routine, and is given in Section E.1 (p. 113).

The same appendix includes the definitions in the standard language for interfacing with the Java

structures, as well as extensions to the pattern matching system that allows convenient access to the

propositional structures.

All DPLs have a claim method that produces a proposition just in case it is already in the assumption

base. Its possible implementations are trivial, but we include our definition of claim here.

1 (define (ab-check p)
2 ;; Returns p if p is in the assumption base,
3 ;; and throws an error otherwise
4 (check
5 ((.contains (ab) p) p)
6 (else (error p " is not in the assumption base"))))
7

8 (define-primitive-method (claim p)
9 ;; Derives p if p is in the assumption base. Every DPL

10 ;; has a claim method.
11 (ab-check p))

The more interesting part of this example, however, is in the implementation of the primitive methods

that make up Athena’s natural-deduction system for the propositional calculus. These are similar enough

to the methods of CND shown in Figure 2.3 (p. 43) that we need not discuss most of them, except to

note a common implementation pattern. Most of the primitive methods depend only on checking that

a number of sentences are already present in the assumption base, and then simply returning an easily

constructed sentence based on the method arguments.
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1 (define-primitive-method (true-intro)
2 ;; />
3 TRUE)
4

5 (define-primitive-method (absurd p np)
6 ;; p,∼ p /⊥
7 (match (list (ab-check p) (ab-check np))
8 ((list x (not x)) FALSE)
9 (_ (error "absurd cannot be applied to " p " and " np))))

10

11 (define-primitive-method (left-and formula)
12 ;; p & q / p
13 (match (ab-check formula)
14 ((and p q) p)
15 (_ (error formula " is not a conjunction"))))
16

17 (define-primitive-method (right-and formula)
18 ;; p & q /q
19 (match (ab-check formula)
20 ((and p q) q)
21 (_ (error formula " is not a conjunction"))))
22

23 (define-primitive-method (both p q)
24 ;; p, q / p & q
25 (and (ab-check p) (ab-check q)))
26

27 (define-primitive-method (left-or p q)
28 ;; p / p ∨ q
29 (or (ab-check p) q))
30

31 (define-primitive-method (right-or p q)
32 ;; q / p ∨ q
33 (or p (ab-check q)))
34

35 (define-primitive-method (cd or-p-q if-p-r if-q-r)
36 ;; p ∨ q, p ⊃ r, q ⊃ r / r
37 (match (list (ab-check or-p-q)
38 (ab-check if-p-r)
39 (ab-check if-q-r))
40 ((list (or p q) (if p r) (if q r)) r)
41 (_ (error "malformed application of cd to " or-p-q ", "
42 if-p-r ", and " if-q-r))))
43

44 (define-primitive-method (mp if-p-q p)
45 ;; p ⊃ q, p /q
46 (match (list (ab-check if-p-q) (ab-check p))
47 ((list (if p q) p) q)
48 (_ (error "malformed application of mp to " if-p-q
49 " and " p))))
50

51 ;; Implementing assume is a bit tricky, because there is no sound way
52 ;; to unconditionally add something to an assumption base. We define
53 ;; a primitive method %assume using another primitive method
54 ;; %%force that unconditionally derives its argument. %assume
55 ;; and %%force are declared within a lexical scope introducing
56 ;; a shared secret %%key, so that %%force cannot be used anywhere
57 ;; but in %assume.
58

59 (let ((%%key (gensym))) ; begin scope of %%key
60

61 (define-primitive-method (%%force p key)
62 (check
63 ((== key %%key) p)
64 (else (error "%%force cannot be used"))))
65

66 (define-primitive-method (%assume p d)
67 ;; %assume returns the conditional that has the antecedent p,
68 ;; and the consequent that is the result of invoking d in an
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69 ;; assumption base that includes p
70 (if p (!(mu (_) (!d))
71 (!%%force p %%key))))
72

73 ) ; end scope of %%key
74

75 (define-macro (assume form env)
76 (destructuring-bind (_ proposition . body) form
77 ‘(!%assume ,proposition (mu () ,@body))))
78

79 (define-primitive-method (dn nnp)
80 ;; ∼∼ p / p
81 (match (ab-check nnp)
82 ((not (not p)) p)
83 (_ (error formula " is not a double negation"))))
84

85 (define-primitive-method (%suppose-absurd p d)
86 (match (!%assume p d)
87 ((if p (equals FALSE)) (not p))
88 (_ (error "malformed application of %suppose-absurd"))))
89

90 (define-macro (suppose-absurd form env)
91 (destructuring-bind (_ p . body) form
92 ‘(!%suppose-absurd ,p (mu () ,@body))))

Example 40 (Axiomatic Propositional Calculus). Using the very same data structures from the previous

example, it is possible to implement a denotational proof language for the propositional calculus using an

axiomatization of the propositional calculus. This axiomatic presentation also makes use of the source

code from Section E.1 (p. 113), but differs in the definition of the primitive methods. All but one of the

(non-claim) primitive methods take propositions as arguments and return instantiations of axiom schemata

with the given propositions. The only inference rule that depends on the content of the assumption base

is modus-ponens, which is defined similarly to mp from the previous example.

1 (define-primitive-method (then-1 p q)
2 ;; p ⊃ (q ⊃ p)
3 (if p
4 (if q p)))
5

6 (define-primitive-method (then-2 p q r)
7 ;; (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))
8 (if (if p (if q r))
9 (if (if p q)

10 (if p r))))
11

12 (define-primitive-method (and-1 p q)
13 ;; (p & q) ⊃ p
14 (if (and p q) p))
15

16 (define-primitive-method (and-2 p q)
17 ;; (p & q) ⊃ q
18 (if (and p q) q))
19

20 (define-primitive-method (and-3 p q)
21 ;; p ⊃ (q ⊃ (p & q))
22 (if p (if q (and p q))))
23

24 (define-primitive-method (or-1 p q)
25 ;; p ⊃ (p ∨ q)
26 (if p (or p q)))
27



CHAPTER 3. RESULTS 53

28 (define-primitive-method (or-2 p q)
29 ;; q ⊃ (q ∨ q)
30 (if q (or p q)))
31

32 (define-primitive-method (or-3 p q r)
33 ;; (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))
34 (if (if p r)
35 (if (if q r)
36 (if (or p q)
37 r))))
38

39 (define-primitive-method (not-1 p q)
40 ;; (p ⊃ q) ⊃ ((p ⊃ ∼q) ⊃ ∼ p)
41 (if (if p q)
42 (if (if p (not q))
43 (not p))))
44

45 (define-primitive-method (not-2 p q)
46 ;; p ⊃ (∼ p ⊃ q)
47 (if p (if (not p) q)))
48

49 (define-primitive-method (not-3 p)
50 ;; p ∨∼ p
51 (or p (not p)))
52

53 (define-primitive-method (modus-ponens antecedent conditional)
54 ;; p, p ⊃ q /q
55 (match (list (ab-check antecedent)
56 (ab-check conditional))
57 ((list p (if p q)) q)
58 (_ (error "malformed application of modus-ponens to antecedent "
59 antecedent " and conditional " cond "."))))

The presentations of the propositional calculus in Examples 39 and 40 are equivalent in that exactly

the same set of theorems is derivable from each system. Yet they clearly differ in that the deductions

that derive any given theorem are very different. The proof that these approaches are equivalent is well

known, and has been given for a variety of axiomatic and natural deduction systems, not just the two

shown above. The implementation of the two systems, despite the fact that they use the same underlying

data structures to represent propositions, does not provide constructions for deriving a sentence using

one set of primitive methods given a derivation using the other.

It is precisely this type of consideration that leads us to develop categorical denotational proof

languages, whose objects do preserve enough information about the way in which a sentence is derived

so as to guide the re-derivation in another system.

Remark 6 (Type-α and Type-ω DPLs). Traditional (i.e., non-categorical) DPLs have no provision for

distinguishing one deduction of a proposition from another. The value returned by method application is a

proposition; no trace of the underlying primitive methods that were used is preserved. However, it is worth

noting that Arkoudas distinguished between two types of DPLs: type-α and type-ω (Arkoudas, 2001a,b).

The difference is that type-α DPLs lack the abstraction mechanisms provided by λ and µ expressions.

Every proof in a type-α DPL, then, is based only on primitive methods and deduction composition. Every
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type-ω DPL contains a type-α DPL that can be obtained simply by removing abstractions, and every

successful deduction in a type-ω DPL gives rise to a corresponding type-α deduction that is essentially the

“trace” of primitive method calls and compositions used in the deduction. Arkoudas calls this “trace” of a

deduction its certificate. In our categorical DPLs, deductions produce arrows from categories, which serve

as their own certificates.

3.4 Implementing Categories

We have seen three examples of how the present work supports the creation of denotational proof

languages, especially by exploiting data structures and algorithms available in the host language, Java.

Our approach for fluid logics is to define categorical denotational proof languages, first defining categorical

structures, that is, objects, arrows, and categories, as Java classes, and then implementing primitive

methods based on them.

Many features of popular logical systems can be expressed categorically in such a manner as to

abstract away one or more implementation details. For instance, Example 28 (p. 33) showed that logical

conjunction is captured by the categorical notion of products. If a category has products, then, given any

two objects of the category, A and B, we may obtain from the category two projections, π and π′, the

domain of each of which is the product of A and B (typically denoted A× B, but this is simply convention)

and the codomains of which are A and B, respectively. Additionally, for any pair of arrows f : C → A and

f : C → B, we may obtain a product arrow 〈 f , g〉: C → A× B. When treating logical systems as categories,

we now know of three proofs in logical systems that have products, even if we do not know the details of

the objects of the system.

3.4.1 Graphs & Categories

The primary data structures needed to implement logical systems categorically are directed graphs and

categories. The Graph and Category interfaces are shown in Figure 3.1. Each instance of Graph implements

operations to check whether an arbitrary Java object is an arrow (i.e., an edge) in the graph, and to

extract the domain and codomain of any arrows (i.e., edges) in the graph. Each instance of Category

implements operations to support the additional structure that Categories add to graphs. Specifically,

categories provide operations to create identity and composite arrows, test whether objects are identity

and composite arrows, and to extract the components of a composite arrow. No operation is needed for

determining the object associated with an identity arrow, since Graph’s domain and codomain operations

will return it.
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«interface»
Graph

domain(A) : O
codomain(A) : O
isArrow(Object) : boolean

A,O «interface»
Category

identity(O) : IA
isIdentity(Object) : boolean
compose(A,A) : CA
isComposite(Object) : boolean
compositeAfter(CA) : A
compositeBefore(CA) : A

A,O,IAvA,CAvA

Figure 3.1: The Graph and Category interfaces provide the operations needed to work with directed
graphs and the basic arrows common to all categories.

Using Java interoperability and the interfaces defined here, we can begin to define category-agnostic

methods in a categorical DPL. For instance, while working with any category, we may, given an object

in that category, retrieve the identity arrow for that object. Similarly, we may compose any compatible

arrows in a category. All the methods declared by the Graph and Category interfaces require an instance

of the graph or category. We shall very often be concerned with working in multiple categories, and

with switching between them. One approach toward achieving this keeps explicit references to category

instances, and passes these to primitive methods that accept categories as arguments. This approach

would define a primitive method identity as follows.

1 (define-primitive-method (identity category object)
2 (.identity category object))

A second approach would treat category references implicitly, and keep the category provided to

the Java .identity method hidden from the user, stored in a dynamically scoped variable. With

this approach, identity would be defined as follows (using the convention from Common Lisp that

dynamically scoped variables have “earmuffs,” i.e., initial and final asterisks).

1 (define-primitive-method (identity object)
2 (.identity *category* object))

We prefer the second approach, as most of the code written by users will focus on deductions in just

one category, and it is inconvenient to manually pass category arguments to every method application.

However, the language at present does not support true dynamic variables. As a workaround, we define a

function, current-category, which returns the “current working category,” using which identity

may defined as follows.

1 (define-primitive-method (identity object)
2 (.identity (current-category) object))
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Using this technique, we define primitive methods for identity (as just shown) and compose. We

discuss “cross-category reasoning” and the dynamic redefinition of current-category more fully in

Section 3.5.5 (p. 71).

Example 41 (Natural Numbers). As demonstrated in Example 23 under addition have a category structure.

The category has a single object, which we denote by ?. The identity arrow on ? is zero, and the category has

an arrow one: ?→ ?. The composition operator is addition. The following Java class, NaturalNumbers,

implements the category interface. Arrows of the category are instances of the Java Integer class (but

only non-negative Integers are arrows). A locally defined enumeration, Star, with a single element,

provides the single object of the category. Every arrow in the category can be viewed as the composite

of some other arrows, and so the implementation of compositeAfter and compositeBefore are

somewhat arbitrary.

1 package edu.rpi.cs.tayloj.fluid;
2

3 import edu.rpi.cs.tayloj.fluid.category.Category;
4 public class NaturalNumbers
5 implements Category<NaturalNumbers.Star,Integer,Integer,Integer> {
6 public NaturalNumbers() {}
7

8 public enum Star { STAR }
9

10 public Star domain( Integer n ) { return Star.STAR; }
11 public Star codomain( Integer a ) { return Star.STAR; }
12

13 public Integer identity( Star o ) { return 0; }
14 public Integer compose( Integer n, Integer m ) { return n + m; }
15

16 public Integer zero() { return 0; }
17 public Integer one() { return 1; }
18

19 public boolean isArrow( Object object ) {
20 return ( object instanceof Integer ) && ((Integer) object) >= 0;
21 }
22

23 public boolean isIdentity( Object object ) {
24 return zero().equals( object );
25 }
26

27 /** Every arrow can be represented as a sum of 0 and itself. */
28 public boolean isComposite( Object object ) { return isArrow( object ); }
29 public Integer compositeAfter( Integer h ) { return 0; }
30 public Integer compositeBefore( Integer h ) { return h; }
31 }

With the Java implementation of N in place, the corresponding denotational proof language is a

simple matter of making current-category return an instance of NaturalNumbers and defining

primitive methods that wrap zero and one.

2 (let ((NN (edu.rpi.cs.tayloj.fluid.NaturalNumbers.)))
3 (define (current-category)
4 NN))
5
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6 (define-primitive-method (zero)
7 ;; zero: ?→ ?
8 (.zero (current-category)))
9

10 (define-primitive-method (one)
11 ;; one: ?→ ?
12 (.one (current-category)))

The natural numbers category is not really a proof system, but it is a category with arrows having

some structure, and is sufficient to demonstrate how we can build more complex methods up from the

primitive methods. InN , we may “derive” natural numbers by constructing them as sums (compositions).

The following code shows a method that derives the natural number n using a number of compositions

linear in n, as well as a method that derives n using a number of compositions logarithmic in n.

16 (define (linear-prove n)
17 (dcheck
18 ((== n 0) (!zero))
19 ((== n 1) (!one))
20 (else (!compose (!one) (!linear-prove (- n 1))))))
21

22 (define (log-prove n)
23 (dcheck
24 ((== n 0) (!zero))
25 ((== n 1) (!one))
26 (else (dlet* ((half (!log-prove (/ n 2)))
27 (whole (!compose half half)))
28 (dcheck
29 ((== 0 (% n 2)) (!claim whole))
30 (else (!compose (!one) whole)))))))

Simple timing shows the marked difference between the performance of the two. Since each application

of a primitive method corresponds to a single step in a proof, we may view linear-prove as creating

longer, or less efficient, proofs than log-prove.

> (dtime (!linear-prove 3294))
Evaluation required 0.931015613 seconds

3294
> (dtime (!log-prove 3294))
Evaluation required 0.005282027 seconds

3294

3.4.2 Categorical Constructions

We implemented Java interfaces for a number of the categorical features that capture properties of

logical systems. In particular, we implemented interfaces for categories with initial and terminal objects,

products and coproducts, and exponential objects. We briefly discussed the significance of products in

Example 25 (p. 32), but have not yet discussed these other categorical constructions. We now describe

these constructs, as well as the Java interfaces that declare the operations needed to work with them.
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3.4.2.1 Initials & Terminals

A terminal object in a category is an object, typically denoted > or 1, such that for every object A in the

category, there is exactly one arrow >A : A→>, called the terminal arrow for A. Note that the terminal

arrow for >, >>, must be the same as id>. In logical systems, the terminal object represents truth, and

the existence of terminal arrows corresponds to the principle that truth is a consequence of every formula.

A >
>A (3.1)

Initial objects are the dual of terminal objects, and are typically denoted by ⊥ or 0. In a category

with an initial object, ⊥, for each object A there is exactly one arrow ⊥A : ⊥→ A. In logical systems, the

initial object represents falsehood, and the existence of initial arrows corresponds to the principle that

everything follows from a contradiction. Just as id> =>>, so also id⊥ =⊥⊥.

⊥ A
⊥A (3.2)

Initial objects also play a role in representing negation. Exponentials (§ 3.4.2.3) will be used to represent

conditionals, and will adopt the tradition of taking the negation of a formula, ∼A, as shorthand for the

conditional A⊃ ⊥.

From an implementation standpoint, a category with an initial (terminal) object must provide an

operation to obtain the initial (terminal) arrows for objects in the category. Once an initial (terminal)

arrow is obtained, the initial (terminal) object can be obtained by taking the domain (codomain) of the

arrow. For convenience, our interfaces also provide operations for obtaining the initial (terminal) object,

checking whether an arbitrary Java Object is the initial (terminal) object, and determining whether an

arbitrary Java Object is an initial (terminal) arrow. The Java interfaces HasInitial and HasTerminal

extend the Graph interface, and are depicted in Figure 3.2.

Remark 7 (Uniquesness up to isomorphism and Java Interfaces). As noted earlier in Remark 4 (p. 34),

most categorical constructions are unique only up to isomorphism. This is the case with initial and

terminal objects. A category may actually have more than one initial or terminal object, but they will

isomorphic. Suppose that a category has two initial objects, ⊥ and ⊥′. There is exactly one arrow from ⊥

to ⊥′, and thus id⊥ =⊥′⊥ ◦⊥⊥′ and id⊥′ =⊥⊥′ ◦⊥
′
⊥.

In Java’s type system, however, a class cannot implement an interface more than once, so the

HasInitial and HasTerminal can only be used to identity one initial and one terminal in a cate-

gory. Because these are objects are unique up to isomorphism, we do not view this as a significant

limitation. This analysis applies to other categorical constructions as well.
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«interface»
HasInitial

initial() : IO
isInitial(Object) : boolean
initialArrow(O) : IA
boolean isInitialArrow(Object) : boolean

O,A,IOvO, IAvA

«interface»
HasTerminal

terminal() : TO
isTerminal(Object) : boolean
terminalArrow(O) : TA
boolean isTerminalArrow(Object) : boolean

O,A,TOvO, TAvA

«interface»
Graph

O,A

Figure 3.2: The HasInitial and HasTerminal interfaces declare all the operations needed for retrieving the
initial and terminal objects from categories that have them, as well as locating initial and terminal arrows
for objects in the category.

3.4.2.2 Products & Coproducts

Products, previously discussed in Example 25 (p. 32), and coproducts are categorical constructions that

correspond, in most logical systems, to conjunctions and disjunctions, respectively. In a category with

products, the product of objects A and B, typically denoted A×B, is an object such that there are projection

arrows πA,B : A× B→ A and π′A,B : A× B→ B, and that for any arrows f : C → A and g : C → B, there is a

unique arrow 〈 f , g〉: C → A× B.

C

A A× B B

f g

πA,B π′A,B

〈 f , g〉 (3.3)

The left and right projection arrows πA,B and π′A,B correspond to the logical proofs that the conjuncts of

a conjunction follow from the conjunction. The product arrow 〈 f , g〉 corresponds to principle that the

product of A and B follows from anything from which A and B each follow.

Given two arrows f : A→ C and g : B→ D, there is an arrow 〈 fπ, gπ′〉: A× B→ C × D. This arrow is

also denoted as f × g : A× B→ C × D in the literature, and we adopt this convention as well.

Coproducts, also known as sums, are the dual of products and correspond to disjunction in logical

systems. In a category with coproducts, the coproduct of objects A and B, denoted A+ B, is an object

such that there are injection arrows ιA,B : A→ A+ B and ι′A,B : B→ A+ B, and that for any pair of arrows
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«interface»
HasProducts

product(O,O) : PO
isProduct(Object) : boolean
leftProjection(PO) : LA
isLeftProjection(Object) : boolean
rightProjection(PO) : RA
isRightProjection(Object) : boolean
productArrow(A,A) : PA
isProductArrow(Object) : boolean
productArrowLeft(PA) : A
productArrowRight(PA) : A

O,A,POvO,PAvA,LAvA,RAvA

«interface»
HasCoproducts

coproduct(O,O) : PO
isCoproduct(Object) : boolean
leftInjection(PO) : LA
isLeftInjection(Object) : boolean
rightInjection(PO) : RA
isRightInjection(Object) : boolean
coproductArrow(A,A) : CA
isCoproductArrow(Object) : boolean
coproductArrowLeft(PA) : A
coproductArrowRight(PA) : A

O,A,COvO,CAvA,LAvA,RAvA

«interface»
Graph

O,A

Figure 3.3: The HasProducts and HasCoproducts interfaces declare all the operations needed for retrieving
product and coproduct objects and arrows from a category.

f : A→ C and g : B → C , there is a unique coproduct arrow [ f , g]: A+ B → C . The injection arrows

correspond to proofs of disjunction introduction, whereby a disjunction may be inferred from either of its

disjuncts. The coproduct arrow is a proof by cases; given proofs of a proposition from each disjunct, that

proposition follows from the disjunction as a whole.

A A+ B B

C

f g

ιA,B ι′A,B

[ f , g] (3.4)

In notation mirroring that for products, given arrows f : A→ C and g : B → D, there is an arrow

[ι f , ι′g]: A+ B→ C + D that can be abbreviated f + g : A+ B→ C + D. This abbreviation is also used in

the literature, but is somewhat less common than the f × g notation used with products.

Implementations of categories with products and coproducts need to provide access to the product

and coproduct objects of the category, the projections and injections, and the product and coproduct

arrows. Additionally, the interfaces HasProducts and HasCoproducts provide predicates for checking

whether Java Objects are these categorical objects or arrows. UML diagrams of these interfaces are

given in Figure 3.3.
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«interface»
HasExponentials

exponential(O,O) : EO
isExponential(Object) : boolean
curry(A) : CA
isCurryArrow(Object) : boolean
curriedArrow(CA) : A
eval(EO) : EA
isEvalArrow(Object) : boolean

O,A,EOvO,EAvA,CAvA

«interface»
Graph

O,A

Figure 3.4: The HasExponentials interface declares all the operations needed for retrieving exponential
objects, eval, and curry arrows from a category.

3.4.2.3 Exponentials

Exponentials are one of the most important constructions in categories that are related to logics (as well

as programming languages). In logical categories, exponential objects play the role of conditionals, and

in programming languages they are functions. An exponential in a category with products is an object CB

and an associated arrow evalB,C such that that the following diagram commutes:

A A× B

CB CB × B C

λ f λ f × idB
f

evalB,C

(3.5)

In logical systems, exponential objects correspond to conditionals, where CB is the conditional B ⊃ C .

Indeed, where the product is interpreted as conjunction, f : A×B→ C is a proof of C from the conjunction

of A and B, and λ f : A→ CB is the proof from A that B ⊃ C . The eval arrow is readily seen to be conditional

elimination, i.e., modus ponens. Categories with exponential objects implement the HasExponentials

interface, shown in Figure 3.4.

3.4.2.4 Double Negations

The categorical features described so far provide enough to reconstruct the features of the intuitionistic

propositional calculus. All of the propositional constructors (&, ∨,⊃, and∼− as an abbreviation for− ⊃ ⊥)

correspond nicely to categorical constructions. To move into the realm of classical propositional calculus,

we define one more categorical interface, HasDoubleNegation, which provides an arrow schema:

dnφ : ∼∼φ→ φ (3.6)
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«interface»
HasDoubleNegation

doubleNegation(O) : DNA
doubleNegationFormula(DNA) : O
isDoubleNegation(Object) : boolean

O, A, DNAvA

«interface»
Graph

O,A

Figure 3.5: The HasDoubleNegation interface declares all the operations needed for obtaining double
negation arrows from a category. (In actual implementation, negations (and double negations) are
exponential objects (∼φ abbreviates φ ⊃ ⊥), so HasDoubleNegation also extends HasTerminal and
HasExponentials.)

Categories with double negation arrows implement the HasDoubleNegation interface, shown in Fig-

ure 3.5. An alternative approach to obtaining a category with classical semantics would be an arrow

schema providing the excluded middle as a theorem:

emφ : >→ φ ∨∼φ (3.7)

This approach is demonstrably equivalent. A proof is given in Appendix D (p. 109).

3.4.3 Categories for Fluid Logics

The interfaces described in the previous section provide a useful abstraction layer that assists in imple-

menting category-agnostic deductive methods. Some combinations of these interfaces correspond to types

of categories that are of particular interest to logicians. These are particularly useful starting points for

implementing fluid logics.

3.4.3.1 Cartesian & Bicartesian Closed Categories

A category is cartesian closed (Lambek & Scott, 1988) if it: (i) has a terminal object; (ii) has binary

products; and (iii) has exponentials. We have seen how, in logical categories, terminal objects correspond

to truth, products to conjunction, and exponentials to conditionals. A logic represented by a cartesian

closed category, then, has all these features. The positive intuitionistic propositional calculus from

Example 20 (p. 30) is an example of a logic whose category is cartesian closed.

A bicartesian closed category is simply a cartesian closed category with an initial object and coproducts.

As logical systems, bicartesian closed categories have both truth and falsehood as sentences, conjunction

and disjunction, and conditionals. The intuitionistic propositional calculus is an example of a logic whose

categorical treatment is a bicartesian closed category. Bicartesian closed categories that additionally have



CHAPTER 3. RESULTS 63

«interface»
HasIndeterminate

parent() : G
indeterminate() : IA
isIndeterminateArrow(Object) : A

O,A,IA vA,G vGraph〈O,A〉

«interface»
HasAdjoin

adjoin(O) : HasIndeterminate〈O,A,IA〉

O,A,IA vA,G vGraph〈O,A〉

«interface»
Graph

O,A

Figure 3.6: The HasIndeterminate interface declares all the operations needed for working with the
indeterminate arrow x of a category C [x], and for retrieving the parent category, C . Categories that
can be extended with indeterminate arrows implement HasAdjoin, which can produce instances of
HasIndeterminate.

double negation arrows capture classical propositional logic.

3.4.3.2 Indeterminates & Polynomial Categories

One of the initial motivations for category-based denotational proof languages was that the types of

“reasoning contexts” so common in natural deduction proof systems, such as conditional or modal sub-

proofs, seem to be captured very well by reasoning in “related” categories. For instance, let C be a

category for the intuitionistic propositional calculus. Then, let C [x : > → A], or just C [x], be the

category like C , but with an additional arrow x : >→ A, as well as any additional arrows required by the

structure of the category (e.g., ιx : >→ A∨ B). The arrows of C [x], then, are those proofs that can be

obtained in the intuitionistic propositional calculus, were it the case that A is a theorem demonstrated by

proof x . Reasoning within C [x] is exactly like reasoning in a natural deduction conditional subproof

beginning with the assumption A. We have already seen an example of this type of category with

regard to the deduction theorem in Example 31 (p. 36). Categories that have indeterminate arrows

implement the HasIndeterminate interface, shown in Figure 3.6. Lambek & Scott (1988) call these

polynomial categories.

Remark 8 (Java’s type system and the relationship between C and C [x]). A Java object cx representing

C [x] would implement the interface HasIndeterminate, and its parent() method should return

an object c representing C . Because C [x] contains all the arrows of C , it should be the case that

c.isArrow(a) implies cx.isArrow(a). While the documentation of the interfaces explains this
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requirement, it cannot be enforced by Java’s type system.

3.5 Fluid Logics for the Natural-Deduction and Axiomatic

Propositional Calculi

We have now developed sufficient categorical structure to capture natural-deduction propositional logic,

and can begin to examine the relationships between logical categories. We develop the natural-deduction

propositional calculus and the axiomatic propositional calculus as our first fluid logics. We begin by

defining categories for the axiomatic propositional calculus and the natural deduction propositional

calculus, and proceed by demonstrating a proof mapping from the former to the latter.

3.5.1 Categorical Axiomatic Propositional Calculus

The axiomatic propositional calculus presented in Example 40 (p. 52) gives rise to a category with a very

simple structure. The objects are the sentences of the propositional calculus, and each axiom schema

σ in the calculus, there is an arrow schema for the category >→ σ. For the modus ponens inference

rule, there is a corresponding arrow rule. Additionally, we posit the existence of identity and composition

arrows though, as we shall see, they serve little purpose in this category. The arrow schemata and rules

for the category are:

idp : p→ p
f : p→ q g : q→ r

g f : p→ r

then1 : >→ p ⊃ (q ⊃ p) then2 : >→ (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

and1 : >→ (p & q) ⊃ p and2 : >→ (p & q) ⊃ q and3 : >→ p ⊃ (q ⊃ (p & q))

or1 : >→ p ⊃ (p ∨ q) or2 : >→ q ⊃ (p ∨ q) or3 : >→ (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))

not1 : >→ (p ⊃ q) ⊃ ((p ⊃ ∼q) ⊃ ∼ p) not2 : >→ p ⊃ (∼ p ⊃ q) not3 : >→ p ∨∼ p

f : >→ p ⊃ q g : >→ p
mp f ,g : >→ q

We include identity and composite arrows because this is a category, but we note that the identity arrows

are not particularly interesting, and that there are very few arrows in the category that can be composed

because all arrow schemata produce arrows with the same domain. Additionally, while this category

captures the propositional calculus insofar as that for every theorem φ, there is an arrow >→ φ, the

objects of the category have very little interesting structure. For instance p &q is not an product of p and q

in this category, for there are no projection arrows p & q→ p or p & q→ q. Similarly, disjunctions are not
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coproducts, truth and falsehood are not terminal and initial objects, and conditionals are not exponentials.

The implementation of the axiomatic propositional calculus as a categorical DPL is straightforward, and

given in Section E.2 (p. 118).

3.5.2 Categorical Natural Deduction Propositional Calculus

The natural deduction propositional calculus given in Example 39 (p. 50) is readily captured by a

bicartesian closed category with double negation arrows. (For the moment, we ignore the abuse of

mapping the (assume ...) deductive form to curry arrows. We will develop a more natural mapping

for assume later in § 3.6 (p. 72).) An implementation, then, needs only to provide a Java implementation

of the appropriate interfaces, and to provide a mapping of the “standard” categorical names to names for

the propositional calculus. The implementation and name mapping are given in Section E.3 (p. 126).

The arrow schemata for the natural deduction category are as follows. These are familiar from preceding

sections, and we do not repeat the uniqueness conditions of arrows here.

reit(A)≡ idA : A→ A
f : A→ B g : B→ C

compose(g, f )≡ g f : A→ C

true-intro(A)≡>A : A→> false-elim(A)≡⊥A : ⊥→ A

left-and(A, B)≡ πA,B : A& B→ A right-and(A, B)≡ π′A,B : A& B→ B

f : C → A g : C → B
both( f , g)≡ 〈 f , g〉: C → A& B

f : A→ C g : B→ C
cd( f , g)≡ [ f , g]: A∨ B→ C

left-or(A, B)≡ ιA,B : A→ A∨ B right-or(A, B)≡ ι′A,B : B→ A∨ B

modus-ponens(A, B)≡ evalA,B : (A⊃ B)& A→ B
f : A& B→ C

assume( f )≡ λ f : A→ B ⊃ C

dn(A)≡ dnA : ∼∼A→ A

3.5.3 Mapping Axiomatic PC to Natural Deduction PC

We now present a mapping from the axiomatic propositional calculus category to the natural deduction

propositional calculus category. The mapping maps each proposition to itself, and because the axiomatic

category has no non-trivial composition arrows, the mapping trivially preserves identity and composition

arrows, and is thus a functor. We define the mapping by defining the corresponding natural deduction

arrows for each of twelve axiomatic schemata.

Identity and composition arrows are the simplest, and map to themselves.
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Conditional Arrows

The then1 schema is easy to derive in the natural deduction category:

then1 7→
π′π: (>& p)& q→ p
λλπ′π: >→ p ⊃ (q ⊃ p)

The then2 schema requires a bit more work, but is still relatively straightforward. First, note that

q ⊃ r and q are easy to derive:

eval(π′ππ× id): ((>& (p ⊃ (q ⊃ r)))& (p ⊃ q))& p→ q ⊃ r (3.8)

eval(π′π× id): ((>& (p ⊃ (q ⊃ r)))& (p ⊃ q))& p→ q (3.9)

Composing eval with the product of these yields r, and currying three times provides the mapping for

then2:

then2 7→
eval〈(3.8), (3.9)〉: ((>& (p ⊃ (q ⊃ r)))& (p ⊃ q))& p→ r

λλλeval〈(3.8), (3.9)〉: >→ (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

Conjunction Arrows

Conjunction arrows have the simplest mappings because of the close connection between products and

exponentials in cartesian categories.

and1 7→
ππ′ : >& (p & q)→ p
λ(ππ′): >→ (p & q) ⊃ p

and2 7→
π′π′ : >& (p & q)→ q
λ(π′π′): >→ (p & q) ⊃ q

and3 7→
π′ × id : (>& p)& q→ p & q

λλ(π′ × id): >→ p ⊃ (q ⊃ (p & q))

Disjunction Arrows

The first two disjunction arrows are trivial:

or1 7→ λ(ιπ′): >→ p ⊃ (p ∨ q) or2 7→ λ(ι′π′): >→ q ⊃ (p ∨ q)

The or3 is somewhat complicated by the fact that it captures “proof by cases,” but coproduct arrows

don’t have an obvious way of incorporating “in-scope” assumptions into each case. First, we note that r

can be derived from the assumptions p ⊃ r and q ⊃ r, and either of p or q:

eval〈ππ′,π〉: p & ((p ⊃ r)& (q ⊃ r))→ r (3.10)

eval〈π′π′,π〉: q & ((p ⊃ r)& (q ⊃ r))→ r (3.11)
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These give rise to a useful coproduct arrow:

[(3.10), (3.11)]: (p & ((p ⊃ r)& (q ⊃ r)))∨ (q & ((p ⊃ r)& (q ⊃ r)))→ r (3.12)

For any objects in a bicartesian closed category, there is an arrow that distributes products over coprod-

ucts. A derivation is given in Theorem 46 (p. 108). Using logical connectives, we take this instantiation:

δ : (A∨ B)& C → (A& C)∨ (B & C)

Composing an appropriate instantiation of δ with (3.12), we have

(3.12)δ : (p ∨ q)& ((p ⊃ r)& (q ⊃ r))→ r (3.13)

The commutativity of conjunction provides:

〈π′, 〈π′ππ,π′π〉〉: ((>& (p ⊃ r))& (q ⊃ r))& (p ∨ q)→ (p ∨ q)& ((p ⊃ r)& (q ⊃ r)) (3.14)

Composing (3.13) and (3.14), and currying three times, we finally derive:

or3 7→ λλλ((3.13)(3.14)): >→ (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r))

Negation Arrows

The not1 schema is actually just a variant of then2, in light of the fact that we take ∼φ as an abbreviation

of φ ⊃ ⊥. In particular, r of then1 is fixed as ⊥, and the order of p ⊃ (q ⊃ r) and p ⊃ q is reversed:

then2 : >→ (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

not1 : >→ (p ⊃ q) ⊃ ((p ⊃ (q ⊃ ⊥)) ⊃ (p ⊃ ⊥))

Thus we have

eval(π′π× id): ((>& (p ⊃ q))& (p ⊃ ∼q))& p→∼q (3.15)

eval(π′ππ× id): ((>& (p ⊃ q))& (p ⊃ ∼q))& p→ q (3.16)

and then

not1 7→ λλλeval〈(3.15), (3.16)〉: >→ (p ⊃ q) ⊃ ((p ⊃ ∼q) ⊃ ∼ p)
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The mapping for not2 is simple:

not2 7→

〈π′,π′π〉: (>& p)&∼ p→∼ p & p eval: ∼ p & p→⊥
eval〈π′,π′π〉: (>& p)&∼ p→⊥ ⊥q : ⊥→ q

⊥qeval〈π′,π′π〉: (>& p)&∼ p→ q

λλ(⊥qeval〈π′,π′π〉): >→ p ⊃ (∼ p ⊃ q)

The mapping for not3 is more complicated. The approach is to derive an arrow > → ∼∼(p ∨∼ p)

and compose it with dn: ∼∼(p ∨∼ p)→ (p ∨∼ p). This case is covered in Lemma 48 (p. 110), and we

will not repeat it here.

Modus Ponens Arrows

Modus ponens and composition are the only arrow rules with preconditions in the axiomatic propositional

calculus, and composition arrows are trivially handled. Modus ponens arrows are only slightly more

complicated. Given two arrows from the axiomatic category, f : > → p ⊃ q and g : > → p, there are

corresponding natural deduction arrows f ′ : >→ p ⊃ q and g ′ : >→ p. Then:

mp f ,g 7→
〈 f ′, g ′〉: >→ (p ⊃ q)& p eval: (p ⊃ q)& p→ q

eval〈 f ′, g ′〉: >→ q

3.5.4 Mapping in the Language

The preceding section shows that for each arrow in the axiomatic category, there is a corresponding

in the natural deduction category. We note that because the mapping preserves identity arrows and

composites, it is a functor, though we will take no more advantage of that fact here. We will now show

the implementation of the mapping in the language.

First, we define a function (not a method) that accepts an arrow of the axiomatic category. The

function should be called in a dynamic environment where current-category returns an instance

of the axiomatic category (since matching patterns may expand to forms that depend on the current

category), and returns a natural deduction method that derives the translation of the axiomatic arrow.

This function is somewhat monolithic, but captures the mapping described in the previous section.

5 (define (ax2nd ax)
6 ;; ax2nd should be called in a context where current-category
7 ;; returns an axiomatic PC category (because the match patterns
8 ;; depend on it), and returns a method that, when called in a
9 ;; context where current-category returns a natural deduction PC

10 ;; category, will derive the corresponding arrow.
11 (match ax
12 ((->identity p)
13 (mu ()
14 (!identity p)))
15 ((->compose g f)
16 (mu ()
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17 (!compose g f)))
18 ((->then1 (if p (if q p)))
19 (mu ()
20 (!discharge* 2 (!right-and* (!left-and* (!identity (and (and TRUE p) q)))))))
21 ((->then2 (if (if p (if q r))
22 (if (if p q)
23 (if p r))))
24 (mu ()
25 (dlet* ((X (!identity (and (and (and TRUE (if p (if q r))) (if p q)) p)))
26 (if-q-then-r
27 (!mp*
28 (!right-and* (!left-and* (!left-and* X)))
29 (!right-and* X)))
30 (q
31 (!mp*
32 (!right-and* (!left-and* X))
33 (!right-and* X))))
34 (!discharge* 3 (!mp* if-q-then-r q)))))
35 ((->and1 (if (and p q) p))
36 (mu ()
37 (!discharge (!left-and* (!right-and* (!identity (and TRUE (and p q))))))))
38 ((->and2 (if (and p q) q))
39 (mu ()
40 (!discharge (!right-and* (!right-and* (!identity (and TRUE (and p q))))))))
41 ((->and3 (if p (if q (and p q))))
42 (mu ()
43 (!discharge* 2 (!times
44 (!right-and TRUE p)
45 (!identity q)))))
46 ((->or1 (if p (or p q)))
47 (mu ()
48 (!discharge (!left-or* (!right-and TRUE p) q))))
49 ((->or2 (if q (or p q)))
50 (mu ()
51 (!discharge (!right-or* (!right-and TRUE q) p))))
52 ((->or3 (if (if p r)
53 (if (if q r)
54 (if (or p q)
55 r))))
56 (mu ()
57 (dlet
58 ((pside (!identity (and (and (and TRUE (if p r)) (if q r)) p)))
59 (qside (!identity (and (and (and TRUE (if p r)) (if q r)) q))))
60 (!discharge* 2
61 (!compose
62 (!distribute p q (and (and TRUE (if p r)) (if q r)))
63 (!cd (!mp* (!right-and* (!left-and* (!left-and* pside)))
64 (!right-and* pside))
65 (!mp* (!right-and* (!left-and* qside))
66 (!right-and* qside))))))))
67 ((->not1 (if (if p q)
68 (if (if p (not q))
69 (not p))))
70 (mu ()
71 (dlet* ((X (!identity (and (and (and TRUE (if p q)) (if p (not q))) p)))
72 (not-q (!mp*
73 (!right-and* (!left-and* X))
74 (!right-and* X)))
75 (q (!mp
76 (!right-and* (!left-and* (!left-and* X)))
77 (!right-and* X))))
78 (!discharge 3 (!mp* not-q q)))))
79 ((->not2 (if p (if (not p) q)))
80 (mu ()
81 (dlet ((X (!identity (and (and TRUE p) (not p)))))
82 (!discharge* 2
83 (!false-elim* (!mp* (!right-and* X)
84 (!right-and* (!left-and* X)))
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85 q)))))
86 ((->not3 (or p (not p)))
87 (mu ()
88 (dlet ((X (!identity (and (and TRUE (not (or p (not p)))) p))))
89 (!dn* (!discharge
90 (!mp*
91 (!right-and TRUE (not (or p (not p))))
92 (!right-or* (!discharge
93 (!mp* (!right-and* (!left-and* X))
94 (!left-or* (!right-and* X) (not p))))
95 p)))))))
96 ((->modus-ponens p if-p-then-q)
97 (let ((f (ax2nd if-p-then-q))
98 (g (ax2nd p)))
99 (mu ()

100 (!mp* (!f) (!g)))))))

This function makes use of a number of auxiliary methods. For instance, right-and* handles

the common task of obtaining a projection arrow and composing it with another. E.g., instead of

(!compose (!right-and a b) f) for an arrow f with codomain (and a b), we may simply use

(!right-and* f).

ax2nd is used within a natural-deduction method %axiomatically and the deductive form based

on it, axiomatically. These can be used in a natural deduction proof to incorporate automatically

axiomatic proofs.

111 (define (%axiomatically ax-method)
112 ;; Temporarily redefine current-category to return an
113 ;; instance of the axiomatic category, and call ax-method
114 ;; within the definition, applying ax2nd to the result
115 ;; to produce a natural deduction method. Then, after
116 ;; restoring the original category, invoke the natural
117 ;; deduction method.
118 (!(let ((cc (current-category))
119 (ax (edu.rpi.cs.tayloj.fluid.calculi.impl.AxiomaticPCImpl.)))
120 (define (current-category) ax)
121 (try/finally
122 (ax2nd (!ax-method))
123 (define (current-category) cc)))))
124

125 (define-macro (axiomatically form env)
126 (destructuring-bind (_ . body) form
127 ‘(!%axiomatically (mu () ,@body))))

Using axiomatically we can compare the arrows of the axiomatic category with the arrows of

the natural deduction category. The functions in-ax and in-nd change the current category, and

ax-derivation and nd-derivation show the derivation of the arrow:
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> (in-ax) # switch to the axiomatic category
> (!then1 p q) # an instantiation of the then1 schema
(->then1 TRUE (if p (if q p)))

> (in-nd) # switch to the natural deduction category
> (axiomatically (!then1 p q)) # the translation of the then1 schema
(->Curry TRUE (if p (if q p)))

> (nd-derivation (axiomatically (!then1 p q))) # its derivation
(->Curry TRUE (if p (if q p)))
(->Curry (and TRUE p) (if q p))
(->Composite (and (and TRUE p) q) p)
(->Composite (and (and TRUE p) q) (and TRUE p))
(->Identity (and (and TRUE p) q) (and (and TRUE p) q))
(->LeftProjection (and (and TRUE p) q) (and TRUE p))

(->RightProjection (and TRUE p) p)

Remark 9 (No Simplification of Arrows). In the present implementation, there is no simplification of

equivalent arrows. For instance, the arrowπid : (>&p)&q→>&p is not simplified toπ: (>&p)&q→>&p.

There are two reasons for this: (i) it is not particularly important for the present effort, especially as proof

simplification and proof normalization using DPLs has been discussed elsewhere (e.g., Arkoudas, 2005b);

and (ii) it is easier to guarantee termination of algorithms that consider arrows case by case when their

forms are unique. The second point is particularly important in categories in which double elimination

arrows are isomorphisms. Such categories collapse to preorders; there is at most one arrow A→ B for any

objects A and B (Low, 2011). By ignoring the equivalences among arrows, we greatly simplify the task of

proof mapping.

3.5.5 Cross-Category Reasoning

The implementation of axiomatically in the previous section can be generalized to other types of

cross-category reasoning for fluid logics. The general procedure seems to be:

1. Change the current category C to a new category D.

2. Call some D method m to derive an arrow f .

3. Call a mapping function k with f to produce a C method g.

4. Change the current category back to C .

5. Call g to produce the mapping of f .

This general procedure is easily implementable in the language and makes for seamless switches between

fluid logics. From the categorical perspective, it is of interest because k may implement a D →C functor,
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or may implement a non-functor mapping. It has the additional advantage that when used to capture

reasoning with different “contexts,” there is typically more than one possible mapping between contexts.

For instance, the traditional natural-deduction rule of conditional introduction is based on the deduction

theorem which states that if some conclusion C is derivable from the assumption B, then the conditional

B ⊃ C is derivable without the assumption of B. The deduction theorem is proved by demonstrating a

general mapping from a proof with an assumption to a proof without the assumption. But there may well

be numerous mappings that would suffice to demonstrate the deduction theorem. These mappings may

have different proof-theoretic properties (e.g., one mapping may produce a proof linear in the size of

the original, while another produces one quadratic in the size of the original). By explicitly providing a

place for the mapping function k, this approach to cross-category reasoning is an excellent foundation for

exploring proof mappings with fluid logics.

3.6 Completing Natural Deduction with a Deduction Theorem

In the previous section, we called the λ, or curry, method for the natural deduction calculus assume.

This choice was based on the λ arrows capture the natural deduction rule of conditional introduction

by “discharging” an assumption. Even so, obtaining an arrow λ f : A→ B ⊃ C in a single step from an

arrow f : A& B→ C is a very different process from assuming B and deriving C . A much more natural

approach is an assume form (like the one given in Example 39 (p. 50)). In the categorical setting, adding

an assumption A to a category C produces the category C [x] which is just like C , but with the additional

arrow x : > → A. For cartesian closed categories, for any arrow f : B → C in C [x], there is a unique

arrow corresponding f ′ : B & A→ C in C . By currying this arrow, we may obtain λ( f ′): B→ A⊃ C .

It is this property that we use to implement a assume form. Rather than implement the deduction

theorem as stated above, we implement a variant which is actually a functor. (The version above is not a

functor, as it does not have a consistent object mapping. For instance, it maps f : B→ C to f ′ : B & A→ C ,

but would also map g : C → B to g ′ : C & A→ B. A functor must always map an object to the same object,

but this mapping takes B in to B & A in the domain and to B in the codomain.) The functor maps each

C [x] arrow f : B→ C to a C arrow f ′ : B & A→ C & A. It is then easy to obtain λ(π f ′): B→ A⊃ C .

We begin with a functional implementation, %assume, that works when the current category imple-

ments HasAdjoin, which provides a method to obtain a category that implements HasIndeterminate

(recall § 3.4.3.2 (p. 63) for these interfaces). This is an instance of the general process described in

§ 3.5.5 (p. 71); m is a C [x] method and k is deduction theorem mapping.
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45 (define (%assume p d k)
46 (dlet ((m (let* ((c (current-category))
47 (cx (.adjoin c p)))
48 (define (current-category) cx)
49 (try/finally
50 (k (!d (!assumption)))
51 (define (current-category) c)))))
52 (!discharge (!left-and* (!m)))))

Now we need only choose a particular deduction theorem mapping, dtm, and we can define an

assume form:

45 (define (%assume p d k)
46 (dlet ((m (let* ((c (current-category))
47 (cx (.adjoin c p)))
48 (define (current-category) cx)
49 (try/finally
50 (k (!d (!assumption)))
51 (define (current-category) c)))))
52 (!discharge (!left-and* (!m)))))

We now develop a functor F from C to C [x : >→ A]. Because C and C [x] have so much structure

in common, this is actually much simpler than the mapping from the axiomatic category to the natural

deduction category. This mapping is also a functor, as it preserves identities and composites. C and

C [x] have exactly the same objects, the functor maps each C [x] object X to X & A in C . Identities and

composites are simple:

F(idB) = idF(B) = idB&A F(g f ) = F(g)F( f )

For any arrow f that C and C [x] have in common (e.g., projection arrows, injection arrows, etc.)

mapping is also very simple:

F(π) = π× idA F(π′) = π′ × idA

F(ι) = ι × idA F(ι′) = ι′ × idA

F(dn) = dn× idA F(eval) = eval× idA

Each of the remaining arrows types (viz., product arrows, coproduct arrows, and curry arrows) depend

on other arrows that are “shorter” proofs. For C [x] arrows f : B→ C and g : B→ D, the product arrow

〈 f , g〉: B→ C & D is mapped as follows by applying F to each of f and g to obtain F( f ): B & A→ C & A

and F(g): B & A→ D & A. These can be combined in a number of ways to produce a B & A→ (C & D)& A

arrow, and we arbitrarily choose:

F(〈 f , g〉) = 〈〈πF( f ),πF(g)〉,π′〉: B & A→ (C & D)& A

Coproduct arrows are slightly more complicated, and make use of curry arrows. For C [x] arrows
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f : B → D and g : C → D, there is a coproduct arrow [ f , g]: B ∨ C → D. The arrows f and g are

mapped to F( f ): B & A → D & A and F(g): C & A → D & A. Each of these may be curried, giving

λF( f ): B→ A⊃ (D & A) and λF(g): C → A⊃ (D & A). The coproduct of these, combined with idA, and

composed with an appropriate eval arrow provides F([ f , g]):

F([ f , g]) = eval([λF( f ),λF(g)]× idA): (B ∨ C)& A→ D & A

The final case is a C [x] arrow λ f : B → C ⊃ D for a C [x] arrow f : B & C → D. F maps f to

F( f ): (B & C)& A→ D & A. Using properties of products, we can easily obtain:

πF( f )〈〈ππ,ππ′〉,π′π′〉: (B & A)& C → D

Currying this provides:

λ(πF( f )〈〈ππ,ππ′〉,π′π′〉): B & A→ C ⊃ D,

from which we obtain:

F(λ f ) = 〈λ(πF( f )〈〈ππ,ππ′〉,π′π′〉),π′〉: B & A→ (C ⊃ D)& A.

This mapping is implemented in the language by:

62 (define (dtm x)
63 ;; A deduction theorem mapping to be called in category C [x],
64 ;; (with assumption x : >→ A) with a C [x] arrow
65 ;; f : B→ C. Returns a method to be called in C
66 ;; that will derive an arrow B & A→ C & A. (From that
67 ;; arrow, it’s trivial to derive an arrow B→ A⊃ C.)
68 (let* ((a (codomain (!assumption)))
69 (-xA (mu (f) (!times f (!identity a)))))
70 (match
71 x
72 ((->true-intro b) (mu () (!-xA (!true-intro b))))
73 ((->false-elim b) (mu () (!-xA (!false-elim b))))
74 ((->left-and b c) (mu () (!-xA (!left-and b c))))
75 ((->right-and b c) (mu () (!-xA (!right-and b c))))
76 ((->left-or b c) (mu () (!-xA (!left-or b c))))
77 ((->right-or b c) (mu () (!-xA (!right-or b c))))
78 ((->dn b) (mu () (!-xA (!dn b))))
79 ((->mp b c) (mu () (!-xA (!mp b c))))
80 ((->identity p)
81 (mu () (!identity (and p a))))
82 ((->compose g f)
83 (let ((gm (dtm g))
84 (fm (dtm f)))
85 (mu () (!compose (!gm) (!fm)))))
86 ((->both f g)
87 (let ((fm (dtm f))
88 (gm (dtm g)))
89 (mu ()
90 (dlet* ((ff (!fm))
91 (gg (!gm)))
92 (!both (!both (!left-and* ff)
93 (!left-and* gg))
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94 (!right-and* ff))))))
95 ((->cd f g)
96 (let ((fm (dtm f))
97 (gm (dtm g)))
98 (mu ()
99 (dlet ((h (!-xA (!cd (!discharge (!fm))

100 (!discharge (!gm))))))
101 (!mp* (!left-and* h)
102 (!right-and* h))))))
103 ((->discharge f)
104 (let ((fm (dtm f)))
105 (mu ()
106 (dlet ((w (!fm)))
107 (dmatch w
108 ((-> (and (and b c) a) (and d a))
109 (dlet* ((x (!identity (and (and b a) c)))
110 (y (!discharge
111 (!left-and*
112 (!compose
113 (!fm)
114 (!both (!both (!left-and* (!left-and* x))
115 (!right-and* x))
116 (!right-and* (!left-and* x))))))))
117 (!both y (!right-and b a)))))))))
118 ((->assumption a)
119 (mu ()
120 (!both (!right-and TRUE a)
121 (!right-and TRUE a))))
122 ;; any other arrow must be an indeterminate from an ancestor, so
123 ;; it should be safe to claim it, since dtm should only be called
124 ;; from within an (assume ...).
125 ((-> _ _)
126 (mu ()
127 (!-xA (!claim x)))))))

With a proper assume form, we can derive theorems involving conditionals much more naturally. For

instance, a proof of the theorem (∼ a ∨ b) ⊃ (a ⊃ b):

289 (define (example)
290 ;; >→ (∼ a ∨ b) ⊃ (a ⊃ b)
291 (assume ((or (not a) b) w)
292 (!cd** w
293 (assume ((not a) x)
294 (assume (a y)
295 (!false-elim* (!mp* x y) b)))
296 (assume (b x)
297 (assume (a _)
298 (!claim x))))))
299

300 ; > (!example)
301 ; (->Curry TRUE (if (or (not a) b) (if a b)))

3.7 Comparing Translations

We now have two mappings into the natural deduction propositional calculus. One maps from axiomatic

logic, and the other from a slightly different natural deduction propositional calculus (one extended with

a hypothesis). Both the axiomatic and extended calculi can be used to prove the same theorems, but

the mappings may produce different arrows in the natural deduction category (without hypotheses).
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The function nd-derivation reconstructs the derivation of an arrow. We can use it to compare the

translation strategies of axiomatically and assume. For instance, consider the theorem b ⊃ (a ∨ b):

> (nd-derivation (axiomatically (!or2 a b)))
1 (1 (->Curry TRUE (if b (or a b))))
2 (2 (->Composite (and TRUE b) (or a b)))
3 (3 (->RightInjection b (or a b)))
4 (4 (->RightProjection (and TRUE b) b))

> (nd-derivation (assume (b x) (!right-or* x a)))
1 (1 (->Curry TRUE (if b (or a b))))
2 (2 (->Composite (and TRUE b) (or a b)))
3 (3 (->LeftProjection (and (or a b) b) (or a b)))
4 (4 (->Composite (and TRUE b) (and (or a b) b)))
5 (5 (->Product (and b b) (and (or a b) b)))
6 (6 (->Composite (and b b) (or a b)))
7 (7 (->RightInjection b (or a b)))
8 (8 (->LeftProjection (and b b) b))
9 (9 (->Composite (and b b) b))
10 (10 (->Identity b b))
11 (11 (->RightProjection (and b b) b))
12 (12 (->Product (and TRUE b) (and b b)))
13 (13 (->RightProjection (and TRUE b) b))
14 (13 (->RightProjection (and TRUE b) b))

Let us consider these in the now-familiar tree-based notation. The first, which makes use of the

manually defined axiomatically translation procedure, is a relatively straightforward derivation:

π′ : >& b→ b ι′ : b→ a ∨ b
π′ι′ : >& b→ a ∨ b

λ(π′ι′): >→ b ⊃ (a ∨ b)

Of course, the translation used by axiomatically is specifically designed to translate the axioms of the

axiomatic propositional calculus, so this translation is essentially written by the creator of the translation.

The second is surprisingly complex, and big enough that we should break it into parts. The first part,

in which we derive an arrow >& b→ (a ∨ b)& b:

π′ : >& b→ b π′ : >& b→ b
〈π′,π′〉: >& b→ b & b

π: b & b→ b ι′ : b→ a ∨ b
ι′π: b & b→ a ∨ b

π′ : b & b→ b idb : b→ b
idbπ

′ : b & b→ b
〈ι′π, idbπ

′〉: b & b→ (a ∨ b)& b
〈ι′π, idbπ

′〉〈π′,π′〉: >& b→ (a ∨ b)& b

(3.17)

Reusing this derivation as a lemma, we may complete the proof:

.... (3.17)
〈ι′π, idbπ

′〉〈π′,π′〉: >& b→ (a ∨ b)& b π: (a ∨ b)& b→ a ∨ b
π〈ι′π, idbπ

′〉〈π′,π′〉: >& b→ a ∨ b
λ(π〈ι′π, idbπ

′〉〈π′,π′〉): >→ b ⊃ (a ∨ b)

This proof uses the arrows present in a bicartesian closed category, and the translation embedded in the

assume form. Most of the sentences in (3.17) are conjunctions that have b as a right conjunct. This is a

result of the mapping from C [>→ b] to C used in the implementation of assume in (assume (b x)
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(!right-or* x a)).

Alternatively, we may consider the structure of the commutative diagrams from which these arrows

could be extracted. The first proof corresponds to the rightmost arrow of the following diagram.

>& b >

b

a ∨ b b ⊃ (a ∨ b)

π′

ι′

λ(ι′π′) (3.18)

This proof takes a very direct approach and does not carry any “extra” information any father than

necessary.

The second proof takes a somewhat more complicated approach, but its shape gives some insight into

how the assume form carries its assumption through a proof.

>& b >

b b & b b

b b

a ∨ b (a ∨ b)& b b

a ∨ b b ⊃ (a ∨ b)

π′

〈π′,π′〉
π′

π π′

π π′

〈ι′π, idbπ
′〉ι′ idb

π π′

π

λ(π〈ι′π, idbπ
′〉π′) (3.19)

The left side of the commutative diagram takes on a shape akin to a cartoon “Christmas tree,” and we can

observe that nodes on the top of the tree and on the tips of the branches on the left side are exactly the

same as the nodes in the left hand chain of (3.18), viz.: >& b, b and a ∨ b. The tips of the right hand

branches simply carry the assumption b through. Noting that idbπ
′ = π′, we can even observe that every

sloped arrow in the right hand branches will be π′.

3.8 Summary

Recall the problem statement from the introduction (§ 1.2 (p. 3)) and the stated goal to:

Develop a formal system for: (i) specifying logical systems and the interactions and rela-

tionships between them and (ii) proof construction using multiple logical systems; formally
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analyze said system; implement in software.

The approach and results demonstrated in this dissertation achieve these goals. The new framework

and approach described herein are formal in nature, and provide the mechanisms for specifying logical

systems using denotational proof languages, and more importantly, the categorical denotational proof

languages that are the foundation of fluid logics. The interactions and relationships between logical

systems is suitably captured in fluid logics by the categorical construction of functors and the types

of mappings that we have demonstrated. We have demonstated that this approach, as implemented

in software permits proof construction using multiple logical systems, and that the results proofs are

amenable to formal analysis.

More specifically, in this chapter we have presented a portable and pragmatic implementation of a

programming language based on the λµ-calculus, and an accompanying “standard library.” We have

shown that this programming language can be used to realize traditional denotational proof languages,

and to greatly simplify their implementation (e.g., the MIU-system was implemented in fewer than fifty

lines). By designing and implementing Java interfaces corresponding to the structures of category theory,

we can just as easily implement categorical denotational proof languages. We demonstrated that we can

relatively easily in the language implement both functor and non-functor mappings (viz.: the axiomatic to

natural-deduction propositional calculus mapping and the deduction theorem functor mapping) and that

these can be used as the “behind-the-scenes” implementation of syntactic constructions for seamlessly

connecting different proof systems. Manual inspection and analysis of the resulting proofs can provide

insight into the nature of these mappings.

In the final chapter, we dicuss future directions for this research and possible applications.
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Discussion & Future Work

In this brief chapter, we will discuss some future research and development that will make the initial work

on fluid logics described in this dissertation more useful, as well as some potential application areas.

4.1 Slate

Slate (Bringsjord et al., 2008) is a software system for argument and proof construction developed over

a number of years by several researchers affiliated with the Rensselaer Artificial Intelligence (AI) and

Reasoning (RAIR) Laboratory. Slate, described in more detail in Appendix F (p. 155), is currently used

in introductory logic courses at Rensselaer, and supports students in learning a variety of formal logics,

including the propositional calculus, first-order predicate calculus, and several modal logics.

Through the progression of a course, students are often permitted to use reasoning “oracles” that serve

as “shortcuts” over material covered earlier in the course. For instance, after the propositional calculus has

been covered and students are learning first-order predicate calculus, they may be allowed to appeal to a

propositional calculus oracle to apply, for instance, De Morgan’s Law, which is essentially propositional, in

a proof for a proof in first-order logic.

Many of the oracles in Slate are based on the principle of a lossy translation from the sentences of

one language into the language of another, and the application of automated reasoning procedures. For

instance, a propositional calculus oracle might be applied to the first-order inquiry, “does ∀x P(x) follow

from (∀x P(x))& (∃yQ(y))?” In such a case, the premise is translated to P1 & P2 and the query to P1, and

the oracle which can reason using only propositional calculus, would respond in the affirmative.

In the cases where the target logic is, in a sense, contained within the source logic, mapping the

formulae in the proof in the target logic back to their counterparts in the source logic. For more complicated

79
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translations, however, this is not possible. For instance, when working with a modal logic, an oracle

could translate premises and a conclusion into the first-order encoding of the Kripke semantics dicussed

in Example 2 (p. 6). (Indeed, this is what the current implementation of Slate does.) An automated

reasoner for first-order logic can then confirm or deny whether the conclusion follows from the premises,

but obtaining a proof in the modal logic requires proof translation that the present work can enable.

Figure F.7 (p. 163) shows how Slate currently displays the proof in first-order logic that justifies the modal

logic oracle’s claim; the ability to show a proof in the modal logic would be a great improvement.

We envision using the present work to augment the Slate system and provide much better feedback to

students from the reasoning oracles. Students will benefit from intelligent courseware that can respond

with more than a simple “correct” or “incorrect,” but with explanations based in the logical system they

are learning.

4.2 Natural Deduction for the Cognitive Event Calculus

The Cognitive Event Calculus (CEC) (Arkoudas & Bringsjord, 2009) is a multi-modal first-order logic

extension of the event calculus for reasoning about the knowledge and beliefs of multiple agents. The

event calculus in CEC is standard, after the fashion of the original event calculue (Kowalski & Sergot, 1986),

but the properties of the cognitive modalities is rather novel.

Epistemic and doxastic modal logics introduce modal operators to form formulae such as Kiφ and B jψ,

interpreted as “i knows that φ” and “ j believes that ψ,” respectively. In keeping with other modal logics,

typical epistemic and doxastic logics incorporate logical omniscience: if an agent knows two propositions,

then the agent also knows all of their consequences. This is a convenient fiction for logicians, but is

not cognitively defensible. Arkoudas & Bringsjord’s (2009) CEC earns the term “cognitive” by limiting

the reasoning abilities of agents. For instance, this may mean that the CEC includes as a theorem every

instance of modus ponens:

Kα(φ ⊃ψ) ⊃ (Kαφ ⊃ Kαψ)

but not of modus tollens:

Kα(φ ⊃ψ) ⊃ ((Kα∼ψ) ⊃ (Kα∼φ))

We strongly expect that a natural-deduction proof calculus for the CEC could be constructed using

modal subproofs that combine a weak, but cognitively plausible, logical system with suppositional

reasoning. The cognitively plausible logical system could feature a logical language with cognitively based

constraints (e.g., a maximum depth on subformulae, disallowing certain combinations of connectives,
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&c..) with a proof system with cognitively oriented inference rules (e.g., including modus ponens and

special cases of other inference rules). Such modal subproof would capture in a natural fashion the types

of cognitive reasoning that is available in the CEC, and could translated back into the axiomatic approach

specified by the CEC. Thus the calculus could be both more amenable the working logician, but still

provably equivalent to the original.

4.3 A Richer Type System

While the intent of the present work was always to develop a framework for categorical denotational proof

systems, the process of implementing the system has made it clear that no extension to the λµ-calculus is

necessary for to do this; it is sufficient to adopt arrows are the fundamental “propositions” of a language,

and the rest falls into place nicely. The use of Java interfaces and classes system to specify categorical

structures ensures the ability to reuse methods in different logics, and with Java is useful in a more

pragmatic sense due to the abundance of existing software written in Java.

The use of Java’s type system to define categorical structures has come at a cost, however. As we

approach more advanced categorical structures, Java’s type system is not expressive enough to capture all

the necessary properties. For instance, a monoidal category is a category C equipped with binary functor

⊗: C ×C → C that satisfies several criteria (e.g., that A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C , though the specifics

do not concern us here). A typical classical logic with both conjunction and disjunction gives rise to two

monoidal categories: one with the functor & and one with the functor ∨. A Java class cannot implement

a type-parameterized interface with different types, and so we cannot express in Java that, for instance, a

bicartesian closed category is a monoidal category in two different ways.

Even in the cases where Java’s type system allows us to express some of the constraints that should be

imposed on a structure, it typically cannot be used to add other axiomatic constraints. For instance, we

cannot impose that composition of an arrow f with an appropriate identity arrow yields f .

In the future, it may be worthwhile to implement a richer type systems in the new system rather than

co-opting Java’s type system to perform a task beyond its capabilities.

4.4 Idiomatic Programming

We have developed the new system following in the style of Arkoudas’s (2005a) Athena, but with several

significant departures. Rather than implementing special deductive forms, we added a general macro

facility. In lieu of implementing a new denotational proof language for each selection of categories
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of interest, we simulated a dynamically scoped global variable keeping track of the current category.

Significantly, rather than implementing categories and arrows (arrows are the analogue of propositions in

Athena), we pushed arrow definition into the host language.

The biggest difference in “day-to-day” programming, however, is that the evaluation of a deduction now

produces a proof, rather than a proposition. Athena proofs tend to be somewhat linear, in that a typical

workflow is to get enough prerequisite propositions into the assumption base and only then evaluate a

deduction that depends on them. Working “backward” is difficult in Athena; there is no convenient way

to complete the final steps of a proof and then complete the beginning, except for deriving a series of

conditionals and chaining them together. In our approach we are actually composing the ultimate proof

from smaller proofs, and the order in which the smaller proofs are constructed is not important.

As an example, consider conjunction elimination. Athena has one right-and rule:

β ∪ {φ &ψ } ` dapp(right-and,φ &ψ);ψ

Our approach has one right-and rule as well, though it does not require any particular arrows to be in the

assumption base:

β ` dapp(right-and,φ,ψ); π′ : φ &ψ→ψ

This primitive method works, but in practice we do not use it much, instead opting for two related rules

*right-and and right-and*, each of which derives the appropriate π′ projection arrow, but additionally

composes it with another arrow (on the left or right, respectively):

β ∪ { f : ψ→ ρ } ` dapp(*right-and,φ, f ); f π′ : φ &ψ→ ρ

β ∪ { f : ρ→ φ &ψ } ` dapp(right-and*, f ); π′ f : ρ→ψ

That is, *right-and prepends to an existing proof, and right-and* appends to an existing proof. If we use

only methods that append to existing proofs, our derivations tend to be very similar to corresponding

derivations in Athena.

We have found this to be a useful technique in practice, but our experience with the system is still in

its initial phases. It may turn out that other approaches may be better suited to some tasks. For instance,

it may be more helpful to write deductive forms containing a number of derivations that are automatically

composed. There are many possibilities to explore.
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4.5 Improved Java Interoperability

The present language supports a limited form of compilation to an intermediate representation which is

subsequently interpreted. In the long term, it may be beneficial to implement a proper compiler targeting

the Java Virtual Machine. This would lead to a significant performance increase, but more importantly, it

could allow interoperability in the form of Java code calling our system.

At present, the runtime of the language is exposed in very limited ways to Java code. A eval method

can be used to evaluate snippets of code in our runtime (and this has proved very helpful in writing

automated unit tests), but no “native” calls are possible. Such a compiler and interoperability layer would

be a significant undertaking, but may prove necessary for any serious integration with other Java software

(such as future versions of Slate).



Bibliography

Anderson, K., Hickey, T., & Norvig, P. (2001). Reference manual for Jscheme. Retrieved from http:

//jscheme.sourceforge.net/jscheme/doc/refman.html. (Date Last Accessed November 6, 2014.)

Arkoudas, K. (2000). Denotational proof languages. (Unpublished doctoral dissertation). Massachusetts

Institute of Technology, Cambridge, MA.

Arkoudas, K. (2001a). Type-alpha DPLs (MIT AI Laboratory Memo No. AIM-2001-025). Cambridge, MA:

Massachusetts Institute of Technology.

Arkoudas, K. (2001b). Type-omega DPLs (MIT AI Laboratory Memo No. AIM-2001-027). Cambridge, MA:

Massachusetts Institute of Technology.

Arkoudas, K. (2004). Specification, abduction, and proof. In W. Fern (Ed.), Proceedings from ATVA 2004:

The Second International Symposium on Automated Technology for Verification and Analysis (pp. 294–309).

Berlin, Germany: Springer-Verlag.

Arkoudas, K. (2005a, March 29). An Athena tutorial. Retrieved from http://people.csail.mit.edu/kostas/

dpls/athena/athenaTutorial.pdf. (Date Last Accessed November 6, 2014.)

Arkoudas, K. (2005b). Simplifying proofs in Fitch-style natural deduction systems. Journal of Automated

Reasoning, 34(3), 239–294.

Arkoudas, K., & Bringsjord, S. (2009). Propositional attitudes and causation. International Journal of

Software and Informatics, 3(1), 47–65.

Awodey, S. (2006). Category theory. New York, NY: Oxford University Press.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2003). The description

logic handbook: Theory, implementation and applications. New York, NY: Cambridge University Press.

84

http://jscheme.sourceforge.net/jscheme/doc/refman.html
http://jscheme.sourceforge.net/jscheme/doc/refman.html
http://people.csail.mit.edu/kostas/dpls/athena/athenaTutorial.pdf
http://people.csail.mit.edu/kostas/dpls/athena/athenaTutorial.pdf


BIBLIOGRAPHY 85

Barwise, J., & Etchemendy, J. (1995). Heterogeneous logic. In B. Chandrasekaran, J. Glasgow, & N. H.

Narayanan (Eds.) Diagrammatic reasoning: cognitive and computational perspectives (pp. 211–234).

Menlo Park, CA: AAAI Press.

Barwise, J., & Etchemendy, J. (1996). Heterogeneous logic. In Allwein, G., & Barwise, J. (Eds.) Logical

reasoning with diagrams (pp. 179–200). New York, NY: Oxford University Press.

Barwise, K. J., & Etchemendy, J. (1994). Hyperproof . Stanford, CA: CSLI Press.

Bechofter, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., &

Stein, L. A. (2004, February 10). OWL: Web ontology language reference (W3C Recommendation).

Cambridge, MA: W3C. Retrieved from http://www.w3.org/TR/owl-ref/. (Date Last Accessed November

6, 2014.)

Bertot, Y., & Castéran, P. (2004). Interactive theorem proving and program development: Coq’Art: The

calculus of inductive constructions. New York, NY: Springer-Verlag.

Bierman, G. M., & de Paiva, V. C. V. (2000). On an intuitionistic modal logic. Studia Logica, 65(3),

383–416.

Bringsjord, S., Arkoudas, K., Clark, M., Shilliday, A., Taylor, J., Schimanski, B., & Yang, Y. (2007). Reporting

on some logic-based machine reading research. In Proceedings from The 2007 AAAI Spring Symposium

on Machine Reading (pp. 23–28). Menlo Park, CA: AAAI Press.

Bringsjord, S., Shilliday, A., Taylor, J., Bello, P., Yang, Y., & Arkoudas, K. (2006). Harnessing intelligent

agent technology to ‘superteach’ reasoning. International Journal of Technology in Teaching and Learning,

2(2), 88–116.

Bringsjord, S., & Taylor, J. (2014). Logic: A modern approach. Unpublished manuscript. Departments of

Cognitive Science and Computer Science, Rensselaer Polytechnic Institute, Troy, NY.

Bringsjord, S., Taylor, J., Shilliday, A., Clark, M., & Arkoudas, K. (2008). Slate: An argument-centered

intelligent assistant to human reasoners. In F. Grasso, N. Green, R. Kibble, & C. Reed (Eds.) Proceedings

from CMNA’08: The Eighth International Workshop on Computational Models of Natural Argument

(pp. 1–10). Retrieved from http://www.cmna.info/CMNA8/programme/CMNA8-Bringsjord-etal.pdf.

(Date Last Accessed November 6, 2014.)

Brouwer, L. E. J. (1925). Intuitionistische zerlegung mathematischer grundbegriffe. Jahresbericht der

Deutschen Mathematiker-Vereinigung, 33, 251–256.

http://www.w3.org/TR/owl-ref/
http://www.cmna.info/CMNA8/programme/CMNA8-Bringsjord-etal.pdf


BIBLIOGRAPHY 86

Central Intelligence Agency. (2003). Iraqi mobile biological warfare agent production plants (General

Report) Washington, DC: Central Intelligence Agency.

Chappell, A., Bringsjord, S., Shilliday, A., Taylor, J., & Wright, W. (2007). Integration experiment with

GeoTime, Slate, and VIKRS (Conference Handout). Troy, NY: Rensselaer AI & Reasoning Laboratory,

Rensselaer Polytechnic Institute.

Cheikes, B. A. (2006). MITRE support to IKRIS (MITRE Technical Report No. MTR060158) McLean, VA:

The MITRE Corporation.

Chellas, B. F. (1980). Modal logic: An introduction. New York, NY: Cambridge University Press.

Chisholm, R. M. (1989). Theory of knowledge (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.

Claessen, K., & Sorensson, N. (2003). New techniques that improve MACE-style finite model finding. In

P. Baumgartner, & C. Fermueller (Eds.) Proceedings from the CADE-19 Workshop: Model Computation

— Principles, Algorithms, Applications (pp. 11-27). Retrieved from http://www.cs.miami.edu/~geoff/

Conferences/CADE/Archive/CADE-19/WS4/04.pdf. (Date Last Accessed November 6, 2014.)

Clark, M., Shilliday, A., Werner, D., & Bringsjord, S. (2007). A primer on the use of arguments in Slate:

Analyzing Pearl Harbor in late 1941 (Rensselaer AI & Reasoning Laboratory Technical Report). Troy, NY:

Rensselaer AI & Reasoning Laboratory, Rensselaer Polytechnic Institute.

Dou, D., & McDermott, D. (2006). Deriving axioms across ontologies. In Proceedings from AAMAS’06:

The Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 952–954).

New York, NY: ACM Press.

Dou, D., McDermott, D., & Qi, P. (2005). Ontology translation by ontology merging and automated

reasoning. In Ontologies for agents: Theory and experiences (pp. 73–94). Berlin, Germany: Birkhäuser

Basel.

Fikes, R. E., Ferrucci, D., & Thurman, D. A. (2005). Knowledge Associates for Novel Intelligence. In

Proceedings from IA 2005: The 2005 International Conference on Intelligence Analysis. McLean, VA: The

MITRE Corporation.

Fitch, F. B. (1952). Symbolic logic: An introduction. New York, NY: The Ronald Press Company.

Fitch, F. B. (1966). Natural deduction rules for obligation. American Philosophical Quarterly, 3(1), 27–38.

Genesereth, M. R., & Fikes, R. E. (1997). Knowledge Interchange Format version 3 reference manual (Logic

Group Technical Report No. Logic-92-1). Stanford, CA: Stanford Logic Group, Stanford University.

http://www.cs.miami.edu/~geoff/Conferences/CADE/Archive/CADE-19/WS4/04.pdf
http://www.cs.miami.edu/~geoff/Conferences/CADE/Archive/CADE-19/WS4/04.pdf


BIBLIOGRAPHY 87

Gentzen, G. (1935). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39(1),

176–210, 405–431.

Goldblatt, R. (1984). Topoi: The categorical analysis of logic. Amsterdam, The Netherlands: Elsevier.

Hawthorn, J. (1990). Natural deduction in normal modal logic. Notre Dame Journal of Formal Logic,

31(2), 263–273.

Hayes, P. (2006). IKL guide (IHMC Technical Report, IKRIS Interoperability Group Report). Pensacola, FL:

Florida Institute for Human & Machine Cognition. Retrieved from http://www.ihmc.us/users/phayes/

IKL/GUIDE/GUIDE.html. (Date Last Accessed November 6, 2014.)

Hayes, P., & Menzel, C. (2006). IKL specification document (IHMC Technical Report, IKRIS Interoperability

Group Report). Pensacola, FL: Florida Institute for Human & Machine Cognition. Retrieved from

http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html. (Date Last Accessed November 6, 2014.)

Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal golden braid. New York, NY: Vintage Books.

Hughes, F. J. (2003). The art and science of the process of intelligence analysis: Case study #4, the sign of

the crescent (Training Case Study). Washington, DC: Joint Military Intelligence College.

Hustadt, U., Schmidt, R. A., & Georgieva, L. (2004). A survey of decidable first-order fragments and

description logics. Journal of Relational Methods in Computer Science, 1, 251–276.

ISO/IEC. (2007). ISO/IEC 24707:2007(E): Information technology — Common Logic (CL): a framework

for a family of logic-based languages. Geneva, Switzerland: ISO/IEC.

Johnson, S. D., Barwise, J., & Allwein, G. (1996). Toward the rigorous use of diagrams in reasoning about

hardware. In Allwein, G., & Barwise, J. (Eds.) Logical reasoning with diagrams (pp. 201–224). New

York, NY: Oxford University Press.

Kapler, T., & Wright, W. (2005). GeoTime information visualization. Information Visualization, 4(2),

136–146.

Kelsey, R., Clinger, W., Rees, J., Abelson, H., Dybvig, R. K., Haynes, C. T., . . . Wand, M. (1998). Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1), 7–105.

Kent (2005). A tradecraft primer: Structured analytic techniques for improving intelligence analysis (Trade-

craft Review Volume 2, Number 2). Reston, VA: Sherman Kent School, Kent Center for Analytic

Tradecraft.

http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html


BIBLIOGRAPHY 88

Kolmogorov, A. N. (1967). On the principle of excluded middle. In J. van Heijenoort (Ed. & Trans.)

From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 414–437). Cambridge, MA:

Harvard University Press. (Original work published 1925.)

Konyndyk, K. (1986). Introductory modal logic. Notre Dame, IN: University of Notre Dame Press.

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing, 4(1),

67–94.

Kripke, S. A. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica, 16, 83–94.

Lambek, J. (1968). Deductive systems and categories i: Syntactic calculus and residuated categories.

Mathematical Systems Theory, 2(4), 287–318.

Lambek, J. (1989). On some connections between logic and category theory. Studia Logica, 48(3),

269–278.

Lambek, J., & Scott, P. J. (1988). Introduction to higher order categorical logic. New York, NY: Cambridge

University Press.

Low, Z. L. (2011). Bicartesian closed categories and logic. Presented at The Cambridge University Part

III Seminars Michaelmas in Logic and Category Theory. Retrieved from http://zll22.user.srcf.net/talks/

2011-12-01-CategoricalLogic.pdf. (Date Last Accessed November 6, 2014.)

Łukasiewicz, J. (1948). The shortest axiom of the implicational calculus of proposition. Proceedings of

the Royal Irish Academy, Section A: Mathematical and physical sciences, 52(3), 25–33. Reprinted as

Łukasiewicz (1970).

Łukasiewicz, J. (1970). The shortest axiom of the implicational calculus of proposition. In L. Borowski

(Ed.) Jan Łukasiewicz, selected works (pp. 295–305). Amsterdam, The Netherlands: North-Holland.

McCune, W. (2003). Otter 3.3 reference manual (Argonne National Laboratory Technical Memorandum

263). Argonne, IL: Argonne National Laboratory.

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving.

Psychological Review, 45(3), 151–166.

Newell, A., & Simon, H. A. (1956). The logic theory machine: A complex information processing system

(Technical Report No. P-868). Santa Monica, CA: Rand Corporation.

http://zll22.user.srcf.net/talks/2011-12-01-CategoricalLogic.pdf
http://zll22.user.srcf.net/talks/2011-12-01-CategoricalLogic.pdf


BIBLIOGRAPHY 89

National Intelligence Council. (2007). Iran: Nuclear intentions and capabilities (National Intelligence

Estimate). Washington, DC: National Intelligence Council.

Office of the Director of National Intelligence. (2008). United States intelligence community information

sharing strategy (Report). Washington, DC: Office of the Director of National Intelligence.

Parigot, M. (1992). λµ-calculus: An algorithmic interpretation of classical natural deduction. In Logic

programming and automated reasoning (pp. 190–201). Berlin, Germany: Springer Berlin Heidelberg.

Paulson, L. C., & Nipkow, T. (1994). Isabelle: A generic theorem prover. Berlin, Germany: Springer-Verlag.

Pollock, J. L. (1987). Defeasible reasoning. Cognitive Science, 11(4), 481–518.

Pollock, J. L. (1992). How to reason defeasibly. Artificial Intelligence, 57(1), 1–42.

Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person. Cambridge, MA: MIT

Press.

Prawitz, D. (1965). Natural deduction: A proof-theoretical study. Uppsala, Sweden: Almqvist & Wiksell.

Prawitz, D., & Malmnäs, P.-E. (1968). A survey of some connections between classical, intuitionistic and

minimal logic. In H. A. Schmidt, K. Schütte, & H.-J. Thiele (Eds.) Contributions to Mathematical Logic:

Proceedings of the Logic Colloquium, Hannover 1966 (pp. 215–229). Amsterdam, The Netherlands:

North-Holland.

Satre, T. W. (1972). Natural deduction rules for modal logic. Notre Dame Journal of Formal Logic, 13(4),

461–475.

Shilliday, A., Bringsjord, S., Werner, D., & Clark, M. (2007a). A Slate-based reconstruction of a CIA/DIA

argument for Iraq having pre-invasion BW capability (Rensselaer AI & Reasoning Laboratory Technical

Report). Troy, NY: Rensselaer AI & Reasoning Laboratory, Rensselaer Polytechnic Institute.

Shilliday, A., Taylor, J., & Bringsjord, S. (2007b). Toward automated provability-based semantic interoper-

ability between ontologies for the intelligence community. In K. S. Hornsby (Ed.) Proceedings from

OIC-2007: Ontology for the Intelligence Community: Towards Effective Exploitation and Integration of

Intelligence Resources (pp. 66–72). Aachen, Germany: CEUR-WS.org.

Shilliday, A., Taylor, J., Clark, M., & Bringsjord, S. (2010). Provability-based semantic interoperability for

information sharing and joint reasoning. In L. Obrst, T. Janssen, & W. Ceusters (Eds.) Ontologies and

semantic technologies for intelligence (pp. 109–128). Clifton, VA: IOS Press.



BIBLIOGRAPHY 90

Siegel, N., Shepard, B., Cabral, J., & Witbrock, M. (2005). Hypothesis generation and evidence assembly

for intelligence analysis: Cycorp’s Noöscape application. In Proceedings from IA 2005: The 2005

International Conference on Intelligence Analysis. McLean, VA: The MITRE Corporation.

Siemens, D. F. (1977). Fitch-style rules for many modal logics. Notre Dame Journal of Formal Logic, 18(4),

631–636.

Sowa, J. F., & Majumdar, A. K. (2003). Analogical reasoning. In A. de Moor, W. Lex, & B. Ganter (Eds.)

Proceedings from ICCS 2003: The Eleventh International Conference on Conceptual Structures: Conceptual

Structures for Knowledge Creation and Communication (pp. 16–36). New York, NY: Springer.

Stickel, M., Waldinger, R., & Chaudhri, V. (2000). A guide to SNARK (Technical Report). Menlo Park, CA:

Artificial Intelligence Center, SRI International. Retrieved from http://www.ai.sri.com/snark/tutorial/.

(Date Last Accessed November 6, 2014.)

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., & Underwood, I. (1994). Deductive composition of

astronomical software from subroutine libraries. In Proceedings from CADE-12: The Twelfth International

Conference on Automated Deduction (pp. 341–355). New York, NY: Springer.

Strzalkowski, T., Small, S., Hardy, H., Yamrom, B., Liu, T., Kantor, P., Ng, K. B., & Wacholder, N. (2005).

HITIQA: A question answering analytical tool, In Proceedings from IA 2005: The 2005 International

Conference on Intelligence Analysis. McLean, VA: The MITRE Corporation.

Suppes, P. (1957). Introduction to logic. Princeton, NJ: D. Van Nostrand.

Sussman, G. J., & Steele, G. L., Jr. (1998). Scheme: An interpreter for extended lambda calculus. Higher

Order Symbolic Computation, 11(4), 405–439.

Taylor, J. (2007). Provability-based semantic interoperability between knowledgebases and databases via

translation graphs (Unpublished master’s thesis). Rensselaer Polytechnic Institute, Troy, NY.

Taylor, J., Bringsjord, S., & Clark, M. (2010). Getting started with Slate (Rensselaer AI & Reasoning

Laboratory Technical Report). Troy, NY: Rensselaer AI & Reasoning Laboratory, Rensselaer Polytechnic

Institute.

Taylor, J., Clark, M., Shilliday, A., & Bringsjord, S. (2008). On Slate’s strength factors and the terms of

likelihood and confidence used by the National Intelligence Council in National Intelligence Estimates

(Rensselaer AI & Reasoning Laboratory Technical Report). Troy, NY: Rensselaer AI & Reasoning

Laboratory, Rensselaer Polytechnic Institute.

http://www.ai.sri.com/snark/tutorial/


BIBLIOGRAPHY 91

Taylor, J., Shilliday, A., & Bringsjord, S. (2007). Provability-based semantic interoperability via translation

graphs. In J. L. Hainaut (Ed.) Proceedings from ONISW 2007: The First International Workshop on

Ontologies and Information Systems for the Semantic Web (pp. 180–189). New York, NY: Springer.

Thurman, D. A., Chappell, A. R., & Welty, C. (2006). Interoperable knowledge representation for intelligence

support (IKRIS) (MITRE Public Release Case No. 07-1111). McLean, VA: The MITRE Corporation.

Toulmin, S. E. (2003). The uses of argument. Cambridge, England: Cambridge University Press.

Whitehead, A. N., & Russell, B. (1927). Principia mathematica. Cambridge, England: Cambridge University

Press.



Appendix A

Implementing the λµ-Calculus

The λµ-calculus is a very simple language, and we have taken a minimalist approach to its implementation,

preferring to define higher level constructs using macros around the core of the language. The pure

λµ-calculus was described in § 2.2.3 (p. 39), but the implemented language is necessarily more complex.

We first implemented a purely functional core λµ-language, consisting of a reader, compiler, and evaluator,

that has no provision for variable assignments, definitions, or mutable state. We then extended the core

language with a top level environment, lexical bindings and assignment, a few special syntactic forms (e.g.,

quote), Java interoperability, and a direct conditional operator (i.e., a cond form that is implemented by

a branch rather than Church-encoded booleans). This extension to the core we call the standard language.

With Java interoperability in place, the standard language also has easy access to Java objects and thereby

efficient record data types.

A.1 The Core Language

The core λµ-calculus is a useful building block for the implementation of the standard language, but

is not a pragmatic λµ-calculus-based programming language. It has no primitive values, so no valid

expressions can be written, and no primitive methods, so neither can any deductions be written. From

an implementation standpoint, however, the core language implements the evaluation semantics of the

λµ-calculus so that other languages based on it need not re-implement this core functionality. The lexical

syntax and grammar of the core language are a subset of that provided by the standard language, and

need not be described here.
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A.2 The Standard Language

The standard language consists of the standard reader (i.e., the lexical processor that reads tokens from an

input text, expands certain primitive types of syntactic sugar (e.g., ’object for (quote object)) and

constructs the list-based representation of the program text, standard compiler, and standard evaluator. We

now describe the lexical syntax of the language and the evaluation semantics. The runtime “compiles” the

source to an intermediate representation that is then interpreted. Parsing and compiling the λµ-calculus is

somewhat more complicated than parsing and compiling pure λ-calculus, on account of the more complex

syntax. The intermediate representation aids efficient evaluation, but is not novel; we will not discuss it.

A.2.1 Lexical Syntax

The lexical syntax of the standard language is similar to most languages in the Lisp family. Lists are delim-

ited by parentheses, where a non-nil terminating atom may be written using a dot, as in (a b . c),

and strings are surrounded by double quotation marks ("..."). Parentheses, whitespace, quotation

marks, and comments serve as lexeme delimiters. Comments are supported with the traditional syn-

tax; a semicolon and any following characters on a line are comments. Sequences of non-delimiter

characters are read and interned to produce symbols. One exception to the previous is support for

traditional DPL notation (Arkoudas, 2000, § 8.6.1); the exclamation point terminates any previous

character sequence, and simultaneously terminates its own sequence. That is, (!prove) is read as

the list (! prove), and (!!!) is read as the list (! ! !). To support convenient quotation and

quasiquotation, the following syntactic sugar is supported: ’object is shorthand for (quote object),

‘form is shorthand for (quasiquote form), and ,form and ,@form abbreviate (unquote form)

and (unquote-splicing form), respectively. Any character in the input stream may be escaped by

preceding it with a backslash (\), and will not perform any special function in that position (e.g., \; does

not introduce a comment, \) does not terminate a list).

In the core language, all character sequences are interned as symbols, so, for instance, the input

(x 23) is a list of two symbols, the first with the name “x”, and the second with the name “23”. The

standard language performs an additional step of processing, and recognizes several types of primitive

values. If the sequence of characters can be parsed as an integral or floating point value, then that integral

or floating point value is the literal in the source code. Otherwise, if the name has the form prescribed by

JScheme’s Java Dot Notation, then a corresponding function or class literal is used (see § A.3.1 (p. 101)).
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A.2.2 Grammar

We have attempted to keep the grammar of our implemented language as close as possible to the grammar

of the pure λµ-calculus, which we repeat here for convenience:

D ::= dapp(E,
−→
M ) { | kwd1(

−→
Ξ1) | · · · | kwdn(

−→
Ξn) }

E ::= c | I | µ
−→
I .D | λ

−→
I .E | app(E,

−→
M )

M ::= E | D

The λ and µ expressions in this grammar are captured straightforwardly by the lambda and mu special

forms, respectively. Identifiers are symbols, which are read according to the previous section. Constants,

also described in the prior section, are numeric literals, strings, and the primitive Java Dot objects

(functions implementing Java field accessors and methods, and class literals).

Function application is implemented in traditional fashion, (E M...), rather than using an app

operator. Instead of dapp, the exclamation point indicates method invocation, as in (! E M...). Since

the exclamation point is given special lexical processing, the space preceding E is unnecessary, and the

method application is typically written without it: (!E M...).

While Arkoudas’s grammar for the λµ-calculus includes provisions for syntactic deductions based on

special keyword forms (e.g., keyn(
−→
Ξn)), the standard language’s compiler performs macroexpansion, and

we have come across no special deductive forms that cannot be realized through macroexpansion that

produces expressions and deductions.

To support interoperability with Java, as well as mutable global and lexical environments, we do

introduce several special forms, described in § A.2.4, that do not have direct counterparts in the pure

λµ-calculus grammar.

A.2.3 Macroexpansion, Compilation, and Evaluation

The standard language compiler performs a transformation to a rudimentary intermediate representa-

tion. This representation corresponds almost directly the primitive language constructs (e.g., function

application, method application, conditional execution), and does not merit much discussion here. The

primary purpose of implementing an intermediate representation in what is, at the present time, a research

language not excessively concerned with performance, is the efficient representation of lexical closures.

However, before translating the cons-based s-expressions into compiled form, the compiler performs

macroexpansion, using macroexpansion functions. Macroexpansion functions are functions of two

arguments, viz., the form to be expanded, and the lexical environment in which the expansion takes place.
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When the compiler compiles a form whose car has a macro binding in the global environment, that is, a

list whose first element is a symbol that the global environment maps to a macroexpansion function, the

compiler calls the macroexpansion function with the entire form and with the current lexical environment.

The macroexpansion function is responsible for returning the expansion of the form, which is simply

another value. If the value returned by the macroexpansion function differs from the original form, the

compiler repeats the macroexpansion process on the new form. Eventually, either the resulting form is a

non-list, a list whose first element does not have a macro binding, or the macroexpansion function returns

the same form, and the macroexpansion process terminates. (Technically speaking, bad macroexpansion

functions could thwart the compilation process by always returning another macroexpandable form, but

this is a pathological case.)

Macroexpansion ultimately reduces every form to one of five types: (i) literals; (ii) variables; (iii) func-

tion applications; (iv) method applications; and (v) special forms. Instances of the last case are described in

the following section. The evaluator may be seen as a function, eval: value×assumption× environment→

value, mapping tuples of values, assumption bases, and environments to values.

literal Literals evaluate to themselves, and are returned by the evaluator as is; there is no dependency on

environment. Literals include strings, numbers, and class literals in Java Dot notation. Other literal

objects can be obtained using the quote special form.

variable Variables references are determined at compile time to be lexical or global references. If the

variable is bound lexically, its value is retrieved from the lexical environment (a constant time

lookup). Otherwise, the name refers to a binding in the global environment (which is based on a

hash table, so lookup is typically constant, but slower than lookup in lexical environments). If a

global variable is not bound in the global environment, the evaluator throws an exception. (This

situation does not occur for lexical bindings, since all lexical binding constructs ensure that variables

are bound to values.)

function application Each function application consists of a expression that must produce a function

object and a (possibly empty) list of phrases whose values will be passed to the function object. The

evaluator evaluates the function form first, then, from left to right, the phrases provided as arguments,

each with the same assumption base and environment. After the function form and all argument

phrases have been evaluated, the body of the function is evaluated under the same assumption

base, and a lexical environment that includes the bindings of variables declared in the function’s

lambda-list to the appropriate values. (This is the realization of [R5] from Figure 2.2 (p. 42).) The
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binding of argument values to the variables declared in the function’s lambda-list is discussed with

the lambda special form.

method application Method applications are analogous to function applications, with the exception that

the assumption base with which the method body is evaluated contains the values produced by the

evaluation of every argument phrase that is a deduction. The method form and argument phrases are

all evaluated with the same assumption base; only to the method body are additional lexical bindings

and the extended assumption base visible. (This corresponds to [R7] from Figure 2.2 (p. 42).)

special forms The evaluation of special forms is described in the following section. Some of the forms

are part of the essential core of the language (e.g., lambda and mu), while others support Java

interoperability, or manipulation of the global or lexical environments.

Remark 10. Concerning Evaluation of Method Arguments In describing the evaluation of method applica-

tions above, we specified that in evaluating a method application in an assumption base β , we evaluate

each argument phrase that is a deduction in β , and the results of these deductions are only available to the

when evaluating the body of the method. The evaluation rule [R7] is actually less restrictive. Recall [R7]:

β ` Di ; S β ∪ {S } ` dapp(E, M1, . . . , S, . . . , Mk); N
β ` dapp(E, M1, . . . , Di , . . . , Mk); N

[R7]

The semantics of [R7] actually permit evaluation of arguments in any order, and can allow the evaluation

of an argument under an assumption base that contains results of other arguments already evaluated.

Arkoudas (2000, §8.7) recognized this “ambiguity” and gave as an example that would lead to different

results under different evaluation strategies the following example:

{∼∼ P, P ⊃Q } ` dapp(both,dapp(mp, P, P ⊃Q),dapp(dn,∼∼ P)); · · ·

If the second argument, dapp(dn,∼∼ P), is evaluated first to produce P, then the first argument,

dapp(mp, P, P ⊃ Q), can be evaluated in the assumption base {∼∼ P, P, P ⊃ Q } and succeed. In fact,

Arkoudas points out that for any particular evaluation strategy, there are examples such as this that will

fail but would succeed under others. We hold with his conclusion:

From a practical standpoint the issue is inconsequential. Just as languages such as Scheme or

ML adopt an applicative-order strategy even though this might fail to accord with the formal

semantics of the λ-calculus, in the same manner it is perfectly sensible for an implementation

of the λµ-calculus to adopt a fixed argument-evaluation order for methods even if this might

fail to accord with the formal semantics. In fact making an argument deduction contingent
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on the result of a fellow argument deduction is patently bad style and very unlikely to be

encountered in practice. (Arkoudas, 2000, § 8.7, p. 305)

A.2.4 Special Forms

In the tradition of the Lisp family of language, we define a number of special forms that cannot be defined

in terms of other language constructs. The set of special forms is intended to be rather minimal, but

there are more than what are present in most of the Lisp family of languages, for two reasons: (i) in

languages based on the λ-calculus, lambda abstraction is sufficient to supply all variable bindings, but in

the λµ-calculus, there must be abstraction over both expressions and deductions, so there are lambda

expressions and mu expressions; and (ii) since the host language is based on Java, and because we

wish to support Java interoperability for pragmatic reasons, our implementation needs constructs to

support Java exceptions. Thus, we define ten special forms (lambda, mu, throw, try/catch/finally,

quote, cond, set, define, define-primitive-method, and define-macro) and describe their

syntax and semantics here.

A.2.4.1 lambda

lambda lambda-list expression
lambda-list ::= variable | ( variable* ) | ( variable+ . variable )

Lambda abstraction is present in the λµ-calculus, and lambda expressions are used in Lisp languages

to denote anonymous functions. We adopt Scheme’s convention for argument lists (Kelsey et al., 1998),

wherein the first argument of a lambda expression may either be a variable, a proper list of variables, or

an improper list of variables whose terminating atom is a variable. In the first case, the single variable is

bound to a list of all arguments provided to the function. In the second case, the number of arguments the

function is called with must be the same as the length of the lambda list. In the third case, the function

must be called with at least as many arguments as are provided in the lambda list; the terminating variable

is bound to a list containing any remaining arguments.

The lambda special form is stricter than the lambda form that is generally available in the language.

Though it permits the flexible lambda lists described above, it may have only a single expression as

its body. In the standard library, however, lambda is defined as a macro that can accept an arbitrary

number of expressions in its body, and sequences them within a seq form. Macroexpansion functions

are called with the entire form that is to be expanded, and can ‘opt-out’ of further macroexpansion by

returning the unchanged form. The lambda macro does precisely this when the function body contains a
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single expression.

A.2.4.2 mu

mu mu-list deduction
mu-list ::= variable | ( variable* ) | ( variable+ . variable )

The special form mu is used to generate anonymous abstractions over deductions, which are called

methods. The syntax of a mu expression is analogous to that of a lambda expression, with the exception

that the body of a mu form must be a single deduction, not an expression. As is the case for lambda, the

standard library defines a mu macro that accepts multiple deductions as its body, sequencing them with a

dseq form.

A.2.4.3 throw

throw throwable

The throw special form is used to throw instances of the Java Throwable class, and is used for

Java interoperability. Due to Java’s strict typing, it is difficult for the standard language interpreter to

throw the Throwable directly; instead, the interpreter throws an instance of WrappedEvaluatorException

wrapping throwable. At the time of writing, it is somewhat unhelpful to use throw, but its counterpart,

try/catch/finally, is more useful.

A.2.4.4 try/catch/finally

try/catch/finally expression catch-clause* finally-expression
catch-clause ::= ((class-literal*) catch-fn)

The try/catch/finally special form is used to execute code in a similar manner to Java’s try,

catch, and finally blocks. First, the expression is executed, and if it produces a value, then

the finally-expression is executed. If the finally-expression throws an exception, then that

exception is thrown from the try/catch/finally form. Otherwise, the value produced by expression

is returned. If expression throws an exception, then each catch-clause is given the option to handle

the exception, until one of the clauses does. A catch-clause handles the exception if the exception is an

instance of the one of class-literals. If a matching catch-clause is found, its catch-fn, which

should be a function that can be invoked with exactly one argument, is called with the exception. The result

of catch-fn is the value returned by the try/catch/finally form. After the catch-fn returns, or if

no matching catch-clause is found, or it catch-fn throws an exception, the finally-expression
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is executed. Finally, if a matching catch-clause was found and its catch-fn returned a value, then

that value is returned. Otherwise, if there was a matching catch-clause, but its catch-fn threw an

exception, that exception is thrown. If there was no matching catch-clause, then the exception thrown

by expression is re-thrown.

A.2.4.5 quote

quote object

The quote special form produces the unevaluated object. As per tradition, the reader recognizes

the shorthand ’object for (quote object).

A.2.4.6 cond

cond test-expr then-expr else-expr

The cond special form evaluates test-expr to produce a Java Boolean object (which may be

cast from a Java boolean). If the value is true, then then-expr is evaluated and its value returned,

otherwise else-expr is evaluated and its value returned. If the evaluation of any these expressions

results in an exception being thrown, then that exception is thrown by the cond form.

A.2.4.7 set

set variable phrase

The set special form provides the update of lexical references. First, phrase is evaluated to produce

a value, then that value is stored in variable. The presence of set in a program introduces mutable

state in λµ-programs, and can significantly increase the complexity in reasoning about program semantics.

It is expected that most code will not make much direct use of set, but may resort to it in order to achieve

efficient implementations of algorithms that would be costly to evaluate otherwise.

A.2.4.8 define

define body
body ::= variable phase

| (function-name . lambda-list) expression
| (method-name . mu-list) deduction
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The define special form is similar to set, but establishes bindings in the top level environment rather

than a local lexical environment. In its first and simplest form, define assigns the value of phrase to

the variable. This form can be used to define simple values, functions, and methods, as in

1 (define pi 3.14)
2 (define list (lambda ...))
3 (define prove (mu ...))

As a syntactic convenience, define also permits Scheme-style definitions for functions and methods:

1 (define (list . arguments) arguments)
2 (define (prove formula) ...)

In the case of a function definition, the first argument to define is a cons whose car is the name of the

function and cdr is the lambda list of the function, and the following equivalence holds:

(define (name . lambda-list) body) == (define name (lambda lambda-list body)

Similarly, for method definition, the following equivalence holds:

(define (name . mu-list) body) == (define name (mu mu-list body))

This special syntax for function and method definitions is built into the compiler, and cannot be

implemented as a macro, because the choice between whether the definition is a function definition or a

method definition depends on the syntactic type of the define’s second argument (i.e., on whether it is

an expression or a deduction), and this information is not available to macroexpansion functions.

Remark 11 (Nesting define). The define form always establishes bindings in the top-level environment.

This a departure from Scheme, wherein nested definitions are local definitions. This is similar to Common

Lisp, where defun always establishes bindings in the global environment.

A.2.4.9 define-primitive-method

The special form define-primitive-method is used to establish primitive method bindings in the

global environment. It has the same syntax as define, but the value it establishes must be a function,

i.e., a lambda expression. No counterpart for primitive functions is provided, as Java methods, invoked

via Java interoperability, serve suitably for that purpose.

A.2.4.10 define-macro

The special form define-macro is used to define macroexpansion functions in the global environment.

Its syntax is identical to that of define, but the value assigned to the name must be a function of exactly
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Table A.1: The standard library defines a number of values, functions, macros, and match patterns. Most
of these have counterparts in other Lisp-like languages, or to constructs in Athena.

Category Symbols

I/O +out+, +err+
Objects equals
Boolean Logic true, false, ˜, ||, &&
Arithmetic +, -, *, /, %, ==, /=, <, <=, >, >=, 1+, 1-
Bitwise Operators lognot, logand, logxor, logior
Conses consp, atom, set-car, set-cdr
Symbols intern, make-symbol, gensym, unintern, symbolp, symbol-name
Lists endp, listp, foldl, foldr, every, some, notevery, notany,

reverse, append, nthcdr, nth, member-if, member, list, list*,
mapcar

Association Lists pairlis, assoc, acons
Functions complement
Control Flow, Binding seq, dseq, progn, prog1, prog2, dprogn let, dlet,

destructuring-bind, check, dcheck, dcond, try/catch,
try/finally, try, dtry, foreach letrec, dletrec, nlet

Pattern Matching match, dmatch, define-simple-match-expander,
define-match-expander, define-match-alias

Match Patterns equals, list, as, satisfies
Arrays make-array, get-array, set-array

two arguments, which should be the form to macroexpand and a lexical environment. The macroexpansion

function must return another form, the macroexpansion of the form passed as the first argument. If the

returned form is identical to the provided form, no further macroexpansion is performed. If the returned

form is not identical to the provided form, then macroexpansion is performed on the returned form.

A.3 The Standard Library

Given define and define-macro, we have implemented a sizable standard library for our standard

language. The best documentation for it is likely the standard-lm.lib code distributed with the

language and included in the appendix (§ E.4 (p. 138)), but a brief summary of its contents is in order.

A.3.1 Java Dot Interoperability

In our standard language we have adopted JScheme’s Java Dot Notation to support Java interoperabil-

ity (Anderson et al., 2001, § Java Access). This syntax provides convenient and easy access to Java classes,

objects, methods, and fields. The Java Dot Notation provides special syntax for the following types of

references: (i) Java classes; (ii) constructors; (iii) static fields; (iv) instance fields; (v) static methods; and

(vi) instance methods. When the reader postprocesses a symbol obtained from the lexer and determines
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whether it should be interpreted as a number (e.g., if all the characters in its name are numerals), symbol,

or a Java Dot entity, it uses the following definitions to recognize Java Dot entities.

Java classes Java class literals are identified by fully qualified class names with a “.class” suffix. For

instance, when the reader encounters the text java.lang.String.class, it returns the class

literal for the Java String class.

constructors Constructors are identified by a final dot “.”, as in java.lang.String., though the

particular constructor that will be called depends on the number of arguments provided to an

invocation. The reader returns a form that will evaluate to a function that will find an invoke a

suitable constructor for the provided arguments.

static and instance fields Static and instance field accessors are identified by a final dollar sign. If the

first character of the identifier is a dot, then the identifier is an instance field accessor, and everything

between is the name of the field. Otherwise it is a static field accessor, and the rest of the identifier is

the fully qualified class name followed by a dot and the name of the field. For instance, .foo$ is a

function that retrieves the foo field of an instance, and com.example.Bar.foo$ is a function that

accesses the static foo field of the class com.example.Bar. These accessor functions internally

use Java reflection, so .foo$ correctly retrieves the value of a field foo from any instance.

static and instance methods Instance methods are identified by an initial dot in their name, e.g.,

.doSomething. The value of .doSomething is a function that should be invoked with at least

one argument (the instance), and will retrieve a suitable method from the instance, based on the

number of arguments and their types, and reflectively invoke it. Static methods are identified by the

presence of a dot anywhere in their name (after class literals, constructors, static and instance fields,

and instance methods have been considered). For instance java.lang.Math.abs is a function

that should be invoked with one argument. The appropriate static method is determined at runtime

based on the type of the arguments.



Appendix B

Adjunctions

In this chapter we briefly discuss a construction that is of great importance in category theory, and that

may play a greater role in future work on fluid logics: adjunctions.

B.1 Review of Functors and Natural Transformations

Recall from Definition 29 (p. 34) that a functor F from category C to D, denoted F : C →D is a category

homomorphism that maps C objects and arrows to D objects and arrows in a way that preserves identity

arrows and arrow composition. Along with functors, we also recall natural transformations, which were

introduced in Definition 32 (p. 38). A natural transformation η: F → G between functors F, G : C →D is

a collection of D arrows indexed by C objects such that the following commutes:

F(A) G(A)

F(B) G(B)

F( f ) G( f )

ηA

ηB

These concepts are both important in category theory, but for the present effort, natural transformations

are not used, and functors, as objects in a programming language, are not used much. Functors encapsulate

the notion of a structure preserving map between categories, and are a concept with which we are quite

concerned, but we will take the approach of implementing such mappings as deductions that produce an

arrow of a category given an arrow of another. That is, in the present effort, we are more concerned with

the implementation of functors as deductions.
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B.2 Adjunctions

Two functors may be related by a natural transformation, as described in § 2.2.2.4 (p. 38), but there

are other types of relationships that may hold between functors (and categories) as well. One of the

most important in category theory is that of an adjunction, or adjointness. There are many equivalent

ways of formally defining adjunction, and more thorough definitions may be found in the literature. The

definition given here is most closely related to that given by Goldblatt (1984, ch. 16).

Definition 42 (Adjunction). An adjunction between categories C and D is given by two functors F : C →

D and G : D →C and two natural transformations

η: idC → G ◦ F

ε: F ◦ G→ idD

such that for any C object A and D object B, if there is a C arrow g : A→ G(B), then there is a unique D

arrow f : F(A)→ B such that the following diagram commutes:

A G(F(A))

G(B)

F(A)

B

g

ηA

fG( f )

and dually, for a D arrow f : F(A)→ B, there is a unique C arrow g : A→ G(B) the following diagram

commutes:

G(B)

A

F(G(B))

F(A)

B

f
g F(g)

εB

The functor F is said to be left adjoint to G, and G right adjoint to F . The natural transformation η is

called the unit of the adjunction, and ε the counit.

Goldblatt (1984, p. 438) provides a particularly illuminating diagram, the essence of which we

recreate here in Figure B.1. An adjunction establishes a type of equivalence between two categories, and

generalizes many categorical constructions.

Example 43 (Exponentials as Adjunctions). There is a noticeable similarity between the diagrams in

Definition 42 and the diagrams in definition of adjunction. Indeed, it turns out that exponentials are
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A

G(B)

F(A)

B

C D
F

G

Figure B.1: An illustration of the structure of an adjunction. For any C object A and D object B, there is a
bijection between the C arrows from A to G(B) and the D arrows from F(A) to B. (This is only part of the
structure of the adjunction; the natural transformations of the adjunction ensure that certain diagrams
involving the corresponding arrows commute.) While F and G are names commonly used in presenting
adjunction, there is some variation in which categories are called C and D.

the range of functors that are right adjoint to product functors (to be defined). The rest of this example

closely follows the structure used by Awodey (2006, Example 9.7, p. 187).

In a category C with (binary) products, for any object B, we may define a functor, typically denoted

−× B : C → C , that takes each object A to A× B and each arrow f : A→ C to f × idB : A× B → C × B.

Note that −× B is an endofunctor: both its domain and codomain are C .

Under what conditions does −×B have a right adjoint? Let us consider what implications the existence

of an adjoint, which for the moment we will call G, would be:

• First, since A× B is − × B(A), for any arrow f : A× B → C , there must be an arrow A→ G(C).

Imitating Figure B.1:

A

G(C)

A× B

C

C C
−× B

G

f
(B.1)

• Second, for any C object C , G(C) must also be a C object, and idG(C) : G(C)→ G(C) a C arrow.

This ensure that there is an arrow −× B(G(C)) → C , that is, G(C) × B → C . Again, imitating

Figure B.1:

G(C)

G(C)

G(C)× B

C

C C

−× B

G

idG(C)

(B.2)

If we denote the right adjoint as ·N rather than G(·), so that G(C) is now CB, we see that the dotted
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arrows in (B.1) and (B.2) are precisely the arrows λ f : A→ CB and evalC ,B : CB ×B→ C! It is worthwhile

to consider the unit and counit of this adjunction:

• The counit of the adjunction between −× C and ·C is a natural transformation ε: ·C ◦ −×C → idC

whose component at A is the arrow evalA : AC × C → A.

• The unit of the adjunction is a natural transformation η: idC →−× C ◦ ·C whose component at A is

an arrow A→ (A× C)C , which is simply the λidA×C : A→ (A× C)C .

It is important to note that each exponential object X Y is the value of the object mapping of ·Y . To say

that a category with products has exponentials means that there is a functor −× Y for every object Y in

the category. Each exponential object X Y is the value of the object mapping of the right adjoint of the

functor −× Y at X . That a category has exponentials does not simply assert the existence of one functor

with a right adjoint, but the existence of one functor with a right adjoint per object of the category.

Example 44 (First-Order Quantification as Adjunction). For a given first order language L, letL (x1, . . . , xn)

be the category whose objects are the formulae of L that contain at most { x1, . . . , xn } free. For formulae

A and B, there is an arrow A→ B if and only if B is derivable from A.

There is a trivial inclusion functor U : L (x1, . . . , xn)→L (x1, . . . , xn, y) which maps each object to

itself (since a formulae with at most x1, . . . , xn free also has at most x1, . . . , xn, y free), and each arrow to

itself, since each derivation in L (x1, . . . , xn) also holds in L (x1, . . . , xn, y).

It turns out that U has both right and left adjoints, which we will consider in turn. First, consider

what it would mean for U to have a right adjoint:

• For each formula φ in which at most x1, . . . , xn appear free, for any derivable formula ψ in which

at most x1, . . . , xn, y appear there, there is a corresponding formulae ψ′ in which at most x1, . . . , xn

appear free. This suggests that the right adjoint to U : L (x1, . . . , xn) → L (x1, . . . , xn, y) must

somehow bind any free occurrence of y in ψ to produce ψ′. Since φ contains no free occurrence of

y , but ψ may, this suggests that the binding operation is (∀y). Indeed, the familiar inference rule:

φ→ψ
φ→ (∀y)ψ ∀I where y does not appear free in φ

describes the necessary bijection between arrows when we recall that U(φ) is φ:

U(φ)→ψ
φ→ (∀y)ψ

The unit of this adjunction is trivial, since U is the inclusion functor. It is simply the family of arrows

id(∀y)idA
= (∀y)idA. The counit is a sort of specialized universal elimination arrow: (∀y)φ→ φ.
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• Duality suggests the left adjoint of U is the existential quantifier, (∃y), but this worth confirming.

The bijection between arrows is now of the form (recalling that ψ and U(ψ) are the same formula,

and in which y does not appear free).

(∃y)φ→ψ
φ→ U(ψ)

where y does not appear free in ψ

which is the familiar existential elimination rule. The unit of this adjunction is a family of specialized

existential introduction arrows, ψ → (∃y)ψ, and the counit is the family of identity arrows,

id(∃y)φ = (∃y)idφ .

Just as a category having exponentials requires the consideration of functors −× X and ·X for each

object X , a category having universal and existential quantification requires consideration of a large

number of functors.

A more detailed treatment of quantifiers as adjoints can be found in Awodey (2006, § 9.5, Quantifiers

as adjoints) and Goldblatt (1984, Chapter 15, Adjointness and Quantifiers). We have not touched upon,

for instance, how the various categories L (· · · ) are combined into a single category for the logic L.

Example 45 (Binary Products as Adjunction). For a category C , consider the product category C ×C

the objects of which are pairs of C objects, and the arrows of which are pairs of C arrows. For instance,

given C arrows f : A → B and g : C → D, the category C × C has an arrow ( f , g): (A, C) → (B, D).

The diagonal functor ∆: C → C × C . maps each C object A to (A, A) and each arrow f : A→ B to

( f , f ): (A, A)→ (B, B). Arrow composition is defined where the composites of the left and right arrows is

defined. That is, (h, i) ◦ ( f , g): (A, B)→ (C , D) is defined if and only if h ◦ f : A→ C and i ◦ g : B→ D are.

Consider the implications of ∆ having a right adjoint ×:

• For each pair ofC objects A and B, there is aC object ×(A, B), which we denote more conventionally

by A× B; and

• for each pair of arrows f : C → A and g : C → B, there is a unique arrow ×( f , g): C → ×(A, B),

often represented as 〈 f , g〉.

It is readily seen that the diagonal functor has a right adjoint if and only if the category has binary products.

The projections are determined by the counit of the adjunction, which is a family of arrows of the form

(π,π′): (A× B, A× B)→ (A, B), and which determines the projections of the product. The unit, for an

object A, is simply 〈idA, idA〉: A→ A× A.
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Distribution Arrows

Theorem 46 (Products Distribute over Coproducts). In a bicartesian closed category, for any objects A, B,

and C, there is a canonical arrow (A+ B)× C → (A× C) + (B × C).

Proof. There are injections,

ι : A× C → (A× C) + (B × C) and ι′ : B × C → (A× C) + (B × C),

that can be curried to produce

λι : A→ ((A× C) + (B × C))C and λι′ : B→ ((A× C) + (B × C))C ,

which give rise to a product arrow,

[λι,λι′]: A∨ B→ ((A× C) + (B × C))C .

This can be combined with idC to produce

[λι,λι′]× idC : (A∨ B)× C → ((A× C) + (B × C))C × C ,

which can be composed with an appropriate eval arrow to give the distribution arrow,

eval([λι,λι′]× idC): (A∨ B)× C → (A× C) + (B × C).
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Equivalence of Double Negation and

Excluded Middle

The essential difference between the intuitionistic and classical propositional calculi is that the classical

propositional calculus accepts the law of excluded middle, φ ∨ ∼φ, and its equivalents, notably the

principle of double negation elimination, ∼φ ⊃ φ, whereas the intuitionistic propositional calculus does

not. Typical categorical constructions admit presentations of intuitionistic logics, and an additional arrow

schema is needed. The obvious candidates have these forms:

dnφ : ∼∼φ→ φ (D.1)

emφ : >→ φ ∨∼φ (D.2)

It turns out, as we should hope, that these approaches are equivalent. In categorical proofs, it is often

more convenient to work with the former than with the latter arrows, but either can be derived from the

other, as we show in this chapter.

Lemma 47 (Double Negation from Excluded Middle). A bicartesian closed category with excluded middle

arrows also has double negation elimination arrows.

Proof. We proceed by using a proof by cases. We show that in a bicartesian closed category, we have

arrows φ→ (∼∼φ ⊃ψ) and ∼φ→ (∼∼φ ⊃ φ). We can compose the corresponding corproduce arrow

with an excluded middle arrow of the form >→ φ ∨∼φ, and so obtain an arrow >→∼∼φ ⊃ φ.

For every object φ in a category with products, there is a left projection arrow, π: φ &∼∼φ→ φ. In
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a category with exponential objects, this arrow can be curried, yielding one of our cases:

λπ: φ→∼∼φ ⊃ φ (D.3)

For the other case, we recall that we have adopted ∼φ as an abbreviation for the exponential φ ⊃ ⊥.

This abbreviation equates the two arrows: eval: ((φ ⊃ ⊥) ⊃ ⊥)&(φ ⊃ ⊥)→⊥ and eval: ∼∼φ&∼φ→⊥.

Then the following diagram commutes:

∼φ &∼∼φ
〈π′,π〉
−−−→∼∼φ &∼φ

eval
−−→⊥

⊥φ
−→ φ

which can be curried to give:

∼φ
λ(⊥φeval〈π′,π〉)
−−−−−−−−−→∼∼φ ⊃ φ (D.4)

This arrow is the other case.

If a category has these arrows, as well as excluded middle arrows generated by (D.2), then the

following diagram commutes.

>

φ φ ∨∼φ ∼φ

∼∼φ ⊃ φ

(D.2)

ι1 ι2

(D.3)

[(D.3), (D.4)]

(D.4)

(D.5)

Uncurrying the central downward pointing arrow yields an arrow >&∼∼φ→ φ, which we adjoin to a

product diagram, yielding the following commutative diagram:

∼∼φ

> >&∼∼φ ∼∼φ

φ

>∼∼φ

〈>∼∼φ , id∼∼φ〉

id∼∼φ

π π′

λ−1(D.5)

(D.6)

from which we may read off an arrow ∼∼φ→ φ.
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Lemma 48 (Excluded Middle from Double Negation). A bicartesian closed category with double negation

arrows also has excluded middle arrows.

Proof. To show that a bicartesian closed category with double negation arrows also has excluded middle

arrows, we first show that there is an arrow >→∼∼(φ ∨∼φ). Then, we compose that arrow with the

double negation arrow to obtain an excluded middle arrow.

Recalling again that ∼φ abbreviates φ ⊃ ⊥, we observe the following arrow:

∼(φ ∨∼φ)&φ
id×ι
−−→∼(φ ∨∼φ)&φ

eval
−−→⊥

which can be curried to produce:

∼(φ ∨∼φ)→∼φ

This, in turn, can be composed with an injection to yield:

∼(φ ∨∼φ)→ φ ∨∼φ (D.7)

Then the following diagram commutes:

>&∼(φ ∨∼φ)

∼(φ ∨∼φ)

∼(φ ∨∼φ) ∼(φ ∨∼φ)& (φ ∨∼φ) φ ∨∼φ

⊥

π′

id

〈id, (D.7)〉

(D.7)

π π′

eval

(D.8)

Then, finally, taking the central downward pointing arrow of (D.8), currying it, and composing with the

double negation arrow of (D.1), we have an arrow >→ φ ∨∼φ:

>
λ(D.8)
−−−→∼∼(φ ∨∼φ)

(D.1)
−−→ φ ∨∼φ (D.9)

Thus, if a bicartesian closed category has double negation arrows, it has excluded middle arrows.

Theorem 49. A bicartesian closed category has arrows of the form ∼∼φ→ φ for every object φ if and only
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if it has arrows of the form >→ φ ∨∼φ.

Proof. Straightforward from Lemmata 47 and 48.

Remark 12 (Applicable to all Bicartesian Closed Categories). While we first encounter this theorem in

handling the classical propositional calculusm note that Theorem 49 holds in every bicartesian closed

category. The proof given here could be used as the basis for a reusable method that depends only the

interfaces specified for bicartesian closed categories.
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Implementation Source Code

In this chapter, we provide the source for the standard library, as well as some of the logical structures

(e.g., the sentences of the propositional calculus), interoperability layers, and categorical denotational

proof languages used herein.

E.1 Structures for the Propositional Calculus

This section shows the Java source of the data structures implementing the language of the propositional

calculus, and the interoperability layer in the standard language that provides convenient access to these

structures.

E.1.1 PropositionalCalculus.java

The PropositionalCalculus class defines a Proposition interface and uses an enumeration and fac-

tory methods to simulate algebraic data types. Aggressive object interning ensures that each propositional

sentence is represented by a unique object (e.g., every occurrence of A∨ B is the same object).

1 package edu.rpi.cs.tayloj.fluid.dpl;
2

3 import java.util.Arrays;
4

5 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Proposition.Type;
6 import edu.rpi.cs.tayloj.fluid.util.Interner;
7

8 /**
9 * PropositionalCalculus provides interfaces and static classes

10 * implementing the sentences of propositional calculus, and
11 * factory methods for creating instances of these classes:
12 */
13 public class PropositionalCalculus {
14
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15 /**
16 * A marker interface that all propositions implement. Propositions are
17 * essentially an algebraic datatype, with each instance having a specified
18 * type and a list of arguments.
19 */
20 public interface Proposition {
21 /**
22 * Returns the type of the proposition.
23 * @return the type of the proposition
24 */
25 Type getType();
26

27 /**
28 * Returns the arguments of the proposition.
29 * @return the arguments of the proposition
30 */
31 Object[] getArguments();
32

33 /**
34 * An enumeration of the types of Propositions.
35 */
36 enum Type {
37 Variable("variable",1),
38 Conjunction("and",2),
39 Disjunction("or",2),
40 Conditional("if",2);
41

42 private final String operator;
43 private final int arity;
44

45 /**
46 * Return the operator for the proposition type.
47 * @return the operator for the type
48 */
49 private String getOperator() { return operator; }
50

51 /**
52 * Returns the arity of the proposition type.
53 * @return the arity of the type
54 */
55 private int getArity() { return arity; }
56

57 Type( String operator, int arity ) {
58 this.operator = operator;
59 this.arity = arity;
60 }
61 }
62 }
63

64 private static class AbstractProposition implements Proposition {
65 private final Type type;
66 private final Object[] arguments;
67 private final String toString;
68

69 private AbstractProposition( Type type, Object... arguments ) {
70 if ( type.getArity() != arguments.length ) {
71 throw new IllegalArgumentException( "propositional type "+type+
72 " requires "+type.getArity()+" arguments, but was provided "+
73 arguments.length+": "+Arrays.deepToString( arguments ));
74 }
75 this.type = type;
76 this.arguments = Arrays.copyOf( arguments, arguments.length );
77 StringBuilder sb = new StringBuilder();
78 sb.append( ’(’ ).append( type.getOperator() );
79 for ( Object o : arguments ) {
80 sb.append( ’ ’ ).append( o.toString() );
81 }
82 this.toString = sb.append( ’)’ ).toString();
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83 }
84

85 @Override
86 public Type getType() { return type; }
87

88 @Override
89 public String toString() { return toString; }
90

91 @Override
92 public Object[] getArguments() { return arguments; }
93 }
94

95 /**
96 * Propositional variables are the atomic sentences of the
97 * propositional calculus.
98 */
99 public static class PropositionalVariable extends AbstractProposition {

100 PropositionalVariable( String name ) {
101 super( Type.Variable, name );
102 }
103

104 @Override
105 public String toString() {
106 return (String) getArguments()[0];
107 }
108 }
109

110 /**
111 * Binary propositions are those sentences that are composed
112 * from two other propositions. These are conjunctions,
113 * disjunctions, and conditionals. Biconditionals and exclusive
114 * disjunctions would be binary propositions if they were
115 * implemented.
116 */
117 public interface BinaryProposition extends Proposition {
118 /**
119 * Returns the left formula of the binary proposition.
120 * @return the left formula
121 */
122 Proposition getLeft();
123

124 /**
125 * Returns the right formula of the binary proposition.
126 * @return the right formula
127 */
128 Proposition getRight();
129 }
130

131 /**
132 * An implementation of {@link BinaryProposition} that provides a constructor
133 * and a toString method (that depends on the implementation of an abstract
134 * method in classes that extend this class).
135 */
136 private static class AbstractBinaryProposition extends AbstractProposition implements

BinaryProposition {
137 private AbstractBinaryProposition( Type type, Proposition left, Proposition right

) {
138 super( type, left, right );
139 }
140

141 @Override
142 public Proposition getLeft() { return (Proposition) getArguments()[0]; }
143

144 @Override
145 public Proposition getRight() { return (Proposition) getArguments()[1]; }
146 }
147

148 /**



APPENDIX E. IMPLEMENTATION SOURCE CODE 116

149 * Conjunctions are sentences of the form "A and B".
150 */
151 public static class Conjunction extends AbstractBinaryProposition {
152 private Conjunction( Proposition left, Proposition right ) {
153 super( Type.Conjunction, left, right );
154 }
155 }
156

157 /**
158 * Disjunctions are sentences of the form "A or B".
159 */
160 public static class Disjunction extends AbstractBinaryProposition {
161 private Disjunction( Proposition left, Proposition right ) {
162 super( Type.Disjunction, left, right );
163 }
164 }
165

166 /**
167 * Conditionals are sentences of the form "if A then B" or
168 * "A implies B".
169 */
170 public static class Conditional extends AbstractBinaryProposition {
171 private Conditional( Proposition left, Proposition right ) {
172 super( Type.Conditional, left, right );
173 }
174

175 /** (if p FALSE) is abbreviated (not p). */
176 @Override
177 public String toString() {
178 if ( FALSE().equals( this.getRight() )) {
179 return "(not "+this.getLeft().toString()+")";
180 }
181 else {
182 return super.toString();
183 }
184 }
185 }
186

187 /**
188 * An interner that creates propositions, ensuring that for equivalent
189 * arguments, the same proposition is returned.
190 */
191 private final static Interner<Proposition> INTERNER = new Interner<Proposition>() {
192 @Override
193 public Proposition create(Object... key) {
194 switch ( (Type) key[0] ) {
195 case Variable:
196 return new PropositionalVariable( (String) key[1] );
197 case Conditional:
198 return new Conditional( (Proposition) key[1], (Proposition) key[2] );
199 case Conjunction:
200 return new Conjunction( (Proposition) key[1], (Proposition) key[2] );
201 case Disjunction:
202 return new Disjunction( (Proposition) key[1], (Proposition) key[2] );
203 default:
204 throw new IllegalArgumentException( key[0]+" is not a PropositionType" );
205 }
206 }
207 };
208

209 /**
210 * Returns the propositional variable with the given name.
211 * @param name the name of the propositional variable
212 * @return the propositional variable
213 */
214 public static PropositionalVariable variable( String name ) {
215 return (PropositionalVariable) INTERNER.intern( Type.Variable, name );
216 }
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217

218 /**
219 * Returns the negation of a formula.
220 * @param formula a Proposition
221 * @return the negation of the formula
222 */
223 public static Conditional not( Proposition formula ) {
224 return (Conditional) INTERNER.intern( Type.Conditional, formula, FALSE() );
225 }
226

227 /**
228 * Returns the propositional variable TRUE
229 * @return the variable TRUE
230 */
231 public static PropositionalVariable TRUE() {
232 return (PropositionalVariable) INTERNER.intern( Type.Variable, "TRUE" );
233 }
234

235 /**
236 * Returns the propositional variable FALSE
237 * @return the variable FALSE
238 */
239 public static PropositionalVariable FALSE() {
240 return (PropositionalVariable) INTERNER.intern( Type.Variable, "FALSE" );
241 }
242

243 /**
244 * Returns the conjunction of two formulas.
245 * @param left the left formula
246 * @param right the right formula
247 * @return the conjunction of the formulas
248 */
249 public static Conjunction and( Proposition left, Proposition right ) {
250 return (Conjunction) INTERNER.intern( Type.Conjunction, left, right );
251 }
252

253 /**
254 * Returns the disjunction of two formulas.
255 * @param left the left formula
256 * @param right the right formula
257 * @return the disjunctio of the formulas
258 */
259 public static Disjunction or( Proposition left, Proposition right ) {
260 return (Disjunction) INTERNER.intern( Type.Disjunction, left, right );
261 }
262

263 /**
264 * Returns the implication of two formulas.
265 * @param left the antecedent (the "if" part)
266 * @param right the consequent (the "then" part)
267 * @return the conditional
268 */
269 public static Conditional implies( Proposition left, Proposition right ) {
270 return (Conditional) INTERNER.intern( Type.Conditional, left, right );
271 }
272 }

E.1.2 pc.lm

The standard language code in pc.lm defines the interoperability layer for interacting with the interfaces

defined in PropositionalCalculus.java.

1 (define (variable name)
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2 (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.variable name))
3

4 (define-macro (declare-variable form env)
5 (destructuring-bind (_ name) form
6 ‘(define ,name (variable ,(symbol-name name)))))
7

8 (define-simple-match-expander (variable x) (formula)
9 ‘((.isInstance

edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus$PropositionalVariable.class
,formula)

10 ,formula))
11

12 (define TRUE (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.TRUE))
13 (define FALSE (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.FALSE))
14

15 (define (not formula)
16 (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.not formula))
17

18 (define-simple-match-expander (not p) (formula)
19 ‘((&& (.isInstance

edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus$Conditional.class ,formula)
20 (.equals FALSE (.getRight ,formula)))
21 (.getLeft ,formula)))
22

23 (define (and left right)
24 (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.and left right))
25

26 (define-simple-match-expander (and p q) (formula)
27 ‘((.isInstance edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus$Conjunction.class

,formula)
28 (.getLeft ,formula)
29 (.getRight ,formula)))
30

31 (define (if left right)
32 (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.implies left right))
33

34 (define-simple-match-expander (if p q) (formula)
35 ‘((.isInstance edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus$Conditional.class

,formula)
36 (.getLeft ,formula)
37 (.getRight ,formula)))
38

39 (define (or left right)
40 (edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.or left right))
41

42 (define-simple-match-expander (or p q) (formula)
43 ‘((.isInstance edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus$Disjunction.class

,formula)
44 (.getLeft ,formula)
45 (.getRight ,formula)))

E.2 An Axiomatic Propositional Calculus Categorical DPL

In this section, we define the Java and standard language implementations of a categorical DPL for an

axiomatic presentation of the propositional calculus. We reuse the implementation of the propositional

structures provided in the previous section.
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E.2.1 AxiomaticPCImpl.java

The AxiomaticPCImpl class implements the categorical structure of the axiomatic propositional calculus.

This class does not implement many categorical interfaces, because the axiomatic presentation actually

has little categorical structure (e.g., conjunctions are not products).

1 package edu.rpi.cs.tayloj.fluid.calculi.impl;
2

3 import static edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.and;
4 import static edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.implies;
5 import static edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.not;
6 import static edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.or;
7 import edu.rpi.cs.tayloj.fluid.calculi.AxiomaticPC;
8 import edu.rpi.cs.tayloj.fluid.calculi.impl.AxiomaticPCImpl.Arrow.ArrowType;
9 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus;

10 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Conditional;
11 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Proposition;
12 import edu.rpi.cs.tayloj.fluid.util.Interner;
13

14 /**
15 * An implementation of the axiomatic propositional calculus. This implementation
16 * is somewhat "quick and dirty", using some dynamic typing internally for convenience.
17 */
18 public class AxiomaticPCImpl
19 implements AxiomaticPC
20 <
21 Proposition, AxiomaticPCImpl.Arrow,
22 AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Composite,
23 AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow,
24 AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow,
25 AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow,
26 AxiomaticPCImpl.Arrow, AxiomaticPCImpl.Arrow,
27 AxiomaticPCImpl.ModusPonens
28 >
29 {
30 /**
31 * Arrows in the propositional calculus category. These are simply
32 * tuples containing the type of the arrow, the domain, and codomain.
33 */
34 public static class Arrow {
35 private final ArrowType type;
36 private final Proposition domain;
37 private final Proposition codomain;
38 /**
39 * Returns an arrow with the specified type, domain, and codomain.
40 * @param type
41 * @param domain
42 * @param codomain
43 */
44 public Arrow( ArrowType type, Proposition domain, Proposition codomain ) {
45 this.type = type;
46 this.domain = domain;
47 this.codomain = codomain;
48 }
49

50 /**
51 * Returns an arrow with the specified type and codomain, and the domain {@link

PropositionalCalculus#TRUE()}.
52 * @param type
53 * @param codomain
54 */
55 public Arrow( ArrowType type, Proposition codomain ) {
56 this( type, PropositionalCalculus.TRUE(), codomain );
57 }
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58

59 @Override
60 public String toString() {
61 return "(->"+type+" "+domain+" "+codomain+")";
62 }
63

64 /**
65 * An enumeration of the types of arrows in the axiomatic propositional
66 * calculus category. This includes the identity and composite arrows.
67 */
68 static enum ArrowType {
69 Identity, Composite("compose"),
70 Then1, Then2,
71 And1, And2, And3,
72 Or1, Or2, Or3,
73 Not1, Not2, Not3,
74 ModusPonens("modus-ponens");
75

76 private final String operator;
77

78 ArrowType( String operator ) {
79 this.operator = operator;
80 }
81

82 ArrowType() {
83 this.operator = null;
84 }
85

86 @Override
87 public String toString() {
88 return operator != null ? operator : super.toString().toLowerCase();
89 }
90 };
91 }
92

93 /**
94 * Composite arrows in the axiomatic propositional calculus.
95 */
96 public static class Composite extends Arrow {
97 private final Arrow g, f;
98 Composite( Arrow g, Arrow f ) {
99 super( ArrowType.Composite, f.domain, g.codomain );

100 if ( f.codomain != g.domain ) {
101 throw new IllegalArgumentException( "Cannot compose arrows "+g+" and

"+f+"." );
102 }
103 else {
104 this.g = g;
105 this.f = f;
106 }
107 }
108 }
109

110 /**
111 * ModusPonens arrows in the axiomatic propositional calculus.
112 */
113 public static class ModusPonens extends Arrow {
114 private final Arrow antecedent, conditional;
115 ModusPonens( Arrow antecedent, Arrow conditional ) {
116 super( ArrowType.ModusPonens, antecedent.domain,

((Conditional)conditional.codomain).getRight() );
117 if ( antecedent.domain != PropositionalCalculus.TRUE() ||
118 conditional.domain != PropositionalCalculus.TRUE() ||
119 antecedent.codomain != ((Conditional)conditional.codomain).getLeft()

) {
120 throw new IllegalArgumentException( "Cannot apply modus ponens to

"+antecedent+" and "+conditional );
121 }
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122 else {
123 this.antecedent = antecedent;
124 this.conditional = conditional;
125 }
126 }
127

128 /**
129 * Returns the arrow whose codomain is the antecedent.
130 * @return the arrow whose codomain is the antecedent
131 */
132 public Arrow getAntecedent() { return antecedent; }
133

134 /**
135 * Returns the arrow whose codomain is the conditional.
136 * @return the arrow whose codomain is the conditional
137 */
138 public Arrow getConditional() { return conditional; }
139 }
140

141 private final static Interner<Arrow> INTERNER =
142 new Interner<AxiomaticPCImpl.Arrow>() {
143 @Override
144 public Arrow create(Object... key) {
145 switch ( (ArrowType) key[0] ) {
146 case Identity:
147 Proposition p = (Proposition) key[1];
148 return new Arrow( ArrowType.Identity, p, p );
149 case Composite:
150 Arrow g = (Arrow) key[1];
151 Arrow f = (Arrow) key[2];
152 return new Composite( g, f );
153 case And1:
154 p = (Proposition) key[1];
155 Proposition q = (Proposition) key[2];
156 return new Arrow( ArrowType.And1, implies(and(p,q),p) );
157 case And2:
158 p = (Proposition) key[1];
159 q = (Proposition) key[2];
160 return new Arrow( ArrowType.And2, implies(and(p,q),q));
161 case And3:
162 p = (Proposition) key[1];
163 q = (Proposition) key[2];
164 return new Arrow( ArrowType.And3, implies(p,implies(q,and(p,q))));
165 case Not1:
166 p = (Proposition) key[1];
167 q = (Proposition) key[2];
168 return new Arrow( ArrowType.Not1,

implies(implies(p,q),implies(implies(p,not(q)),not(p))));
169 case Not2:
170 p = (Proposition) key[1];
171 q = (Proposition) key[2];
172 return new Arrow( ArrowType.Not2, implies(p,implies(not(p),q)));
173 case Not3:
174 p = (Proposition) key[1];
175 return new Arrow( ArrowType.Not3, or(p,not(p)));
176 case Or1:
177 p = (Proposition) key[1];
178 q = (Proposition) key[2];
179 return new Arrow( ArrowType.Or1, implies(p,or(p,q)));
180 case Or2:
181 p = (Proposition) key[1];
182 q = (Proposition) key[2];
183 return new Arrow( ArrowType.Or2, implies(q,or(p,q)));
184 case Or3:
185 p = (Proposition) key[1];
186 q = (Proposition) key[2];
187 Proposition r = (Proposition) key[3];
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188 return new Arrow( ArrowType.Or3,
implies(implies(p,r),implies(implies(q,r),implies(or(p,q),r))));

189 case Then1:
190 p = (Proposition) key[1];
191 q = (Proposition) key[2];
192 return new Arrow( ArrowType.Then1, implies(p,implies(q,p) ));
193 case Then2:
194 p = (Proposition) key[1];
195 q = (Proposition) key[2];
196 r = (Proposition) key[3];
197 return new Arrow( ArrowType.Then2,

implies(implies(p,implies(q,r)),implies(implies(p,q),implies(p,r))));
198 case ModusPonens:
199 return new ModusPonens( (Arrow) key[1], (Arrow) key[2] );
200 default:
201 throw new IllegalArgumentException( key[0]+" is not a legal

ArrowType" );
202 }
203 }
204 };
205

206 @Override
207 public Arrow identity(Proposition object) {
208 return INTERNER.intern( ArrowType.Identity, object );
209 }
210

211 @Override
212 public boolean isIdentity(Object object) {
213 return object instanceof Arrow && ((Arrow)object).type == ArrowType.Identity;
214 }
215

216 @Override
217 public Composite compose(Arrow g, Arrow f) {
218 return (Composite) INTERNER.intern( ArrowType.Composite, g, f );
219 }
220

221 @Override
222 public boolean isComposite(Object object) {
223 return object instanceof Arrow && ((Arrow)object).type == ArrowType.Composite;
224 }
225

226 @Override
227 public Arrow compositeAfter(Composite h) {
228 return h.g;
229 }
230

231 @Override
232 public Arrow compositeBefore(Composite h) {
233 return h.f;
234 }
235

236 @Override
237 public Proposition domain(Arrow arrow) {
238 return arrow.domain;
239 }
240

241 @Override
242 public Proposition codomain(Arrow arrow) {
243 return arrow.codomain;
244 }
245

246 @Override
247 public boolean isArrow(Object object) {
248 return object instanceof Arrow;
249 }
250

251 @Override
252 public Arrow then1(Proposition a, Proposition b) {
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253 return INTERNER.intern( ArrowType.Then1, a, b );
254 }
255

256 @Override
257 public Arrow then2(Proposition a, Proposition b, Proposition c) {
258 return INTERNER.intern( ArrowType.Then2, a, b, c );
259 }
260

261 @Override
262 public Arrow and1(Proposition a, Proposition b) {
263 return INTERNER.intern( ArrowType.And1, a, b );
264 }
265

266 @Override
267 public Arrow and2(Proposition a, Proposition b) {
268 return INTERNER.intern( ArrowType.And2, a, b );
269 }
270

271 @Override
272 public Arrow and3(Proposition a, Proposition b) {
273 return INTERNER.intern( ArrowType.And3, a, b );
274 }
275

276 @Override
277 public Arrow or1(Proposition a, Proposition b) {
278 return INTERNER.intern( ArrowType.Or1, a, b );
279 }
280

281 @Override
282 public Arrow or2(Proposition a, Proposition b) {
283 return INTERNER.intern( ArrowType.Or2, a, b );
284 }
285

286 @Override
287 public Arrow or3(Proposition a, Proposition b, Proposition c) {
288 return INTERNER.intern( ArrowType.Or3, a, b, c );
289 }
290

291 @Override
292 public Arrow not1(Proposition a, Proposition b) {
293 return INTERNER.intern( ArrowType.Not1, a, b );
294 }
295

296 @Override
297 public Arrow not2(Proposition a, Proposition b) {
298 return INTERNER.intern( ArrowType.Not2, a, b );
299 }
300

301 @Override
302 public Arrow not3(Proposition a) {
303 return INTERNER.intern( ArrowType.Not3, a );
304 }
305

306 @Override
307 public ModusPonens modusPonens(Arrow antecedent, Arrow conditional) {
308 return (ModusPonens) INTERNER.intern( ArrowType.ModusPonens, antecedent,

conditional );
309 }
310

311 @Override
312 public boolean isThen1(Arrow arrow) {
313 return ArrowType.Then1.equals( arrow.type );
314 }
315

316 @Override
317 public boolean isThen2(Arrow arrow) {
318 return ArrowType.Then2.equals( arrow.type );
319 }



APPENDIX E. IMPLEMENTATION SOURCE CODE 124

320

321 @Override
322 public boolean isAnd1(Arrow arrow) {
323 return ArrowType.And1.equals( arrow.type );
324 }
325

326 @Override
327 public boolean isAnd2(Arrow arrow) {
328 return ArrowType.And2.equals( arrow.type );
329 }
330

331 @Override
332 public boolean isAnd3(Arrow arrow) {
333 return ArrowType.And3.equals( arrow.type );
334 }
335

336 @Override
337 public boolean isOr1(Arrow arrow) {
338 return ArrowType.Or1.equals( arrow.type );
339 }
340

341 @Override
342 public boolean isOr2(Arrow arrow) {
343 return ArrowType.Or2.equals( arrow.type );
344 }
345

346 @Override
347 public boolean isOr3(Arrow arrow) {
348 return ArrowType.Or3.equals( arrow.type );
349 }
350

351 @Override
352 public boolean isNot1(Arrow arrow) {
353 return ArrowType.Not1.equals( arrow.type );
354 }
355

356 @Override
357 public boolean isNot2(Arrow arrow) {
358 return ArrowType.Not2.equals( arrow.type );
359 }
360

361 @Override
362 public boolean isNot3(Arrow arrow) {
363 return ArrowType.Not3.equals( arrow.type );
364 }
365

366 @Override
367 public boolean isModusPonens(Arrow arrow) {
368 return ArrowType.ModusPonens.equals( arrow.type );
369 }
370 }

E.2.2 pc-axiomatic-cdpl.lm

The standard language code simply wraps the methods defined in the Java code, and defines pattern

matching definitions.

1 (load "include/pc.lm")
2 (load "include/categories.lm")
3

4 (let ((%axpc (edu.rpi.cs.tayloj.fluid.calculi.impl.AxiomaticPCImpl.)))
5 (define (current-category)
6 %axpc))
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7

8 (define-primitive-method (and1 p q)
9 (.and1 (current-category) p q))

10

11 (define-primitive-method (and2 p q)
12 (.and2 (current-category) p q))
13

14 (define-primitive-method (and3 p q)
15 (.and3 (current-category) p q))
16

17 (define-primitive-method (or1 p q)
18 (.or1 (current-category) p q))
19

20 (define-primitive-method (or2 p q)
21 (.or2 (current-category) p q))
22

23 (define-primitive-method (or3 p q r)
24 (.or3 (current-category) p q r))
25

26 (define-primitive-method (not1 p q)
27 (.not1 (current-category) p q))
28

29 (define-primitive-method (not2 p q)
30 (.not2 (current-category) p q))
31

32 (define-primitive-method (not3 p)
33 (.not3 (current-category) p))
34

35 (define-primitive-method (then1 p q)
36 (.then1 (current-category) p q))
37

38 (define-primitive-method (then2 p q r)
39 (.then2 (current-category) p q r))
40

41 (define-primitive-method (modus-ponens a c)
42 (.modusPonens (current-category) a c))
43

44 (define-simple-match-expander (->then1 p) (arrow)
45 ‘((.isThen1 (current-category) ,arrow)
46 (codomain ,arrow)))
47

48 (define-simple-match-expander (->then2 p) (arrow)
49 ‘((.isThen2 (current-category) ,arrow)
50 (codomain ,arrow)))
51

52 (define-simple-match-expander (->and1 p) (arrow)
53 ‘((.isAnd1 (current-category) ,arrow)
54 (codomain ,arrow)))
55

56 (define-simple-match-expander (->and2 p) (arrow)
57 ‘((.isAnd2 (current-category) ,arrow)
58 (codomain ,arrow)))
59

60 (define-simple-match-expander (->and3 p) (arrow)
61 ‘((.isAnd3 (current-category) ,arrow)
62 (codomain ,arrow)))
63

64 (define-simple-match-expander (->or1 p) (arrow)
65 ‘((.isOr1 (current-category) ,arrow)
66 (codomain ,arrow)))
67

68 (define-simple-match-expander (->or2 p) (arrow)
69 ‘((.isOr2 (current-category) ,arrow)
70 (codomain ,arrow)))
71

72 (define-simple-match-expander (->or3 p) (arrow)
73 ‘((.isOr3 (current-category) ,arrow)
74 (codomain ,arrow)))
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75

76 (define-simple-match-expander (->not1 p) (arrow)
77 ‘((.isNot1 (current-category) ,arrow)
78 (codomain ,arrow)))
79

80 (define-simple-match-expander (->not2 p) (arrow)
81 ‘((.isNot2 (current-category) ,arrow)
82 (codomain ,arrow)))
83

84 (define-simple-match-expander (->not3 p) (arrow)
85 ‘((.isNot3 (current-category) ,arrow)
86 (codomain ,arrow)))
87

88 (define-simple-match-expander (->modus-ponens antecedent conditional) (arrow)
89 ‘((.isModusPonens (current-category) ,arrow)
90 (.getAntecedent ,arrow)
91 (.getConditional ,arrow)))

E.3 A Natural-Deduction Propositional Calculus Categorical DPL

In this section, we define the Java and standard language implementations of a categorical DPL for

a natural-deduction presentation of the propositional calculus. We reuse the implementation of the

propositional structures provided earlier.

E.3.1 NaturalDeductionPCImpl.java

The NaturalDeductionPCImpl class implements the categorical structure of the natural-deduction

propositional calculus. This class implements a number of categorical interfaces, because the natural-

deduction calculus has the relatively rich categorical structure of a bicartesian closed category.

1 package edu.rpi.cs.tayloj.fluid.calculi.impl;
2

3 import java.util.Arrays;
4 import java.util.Objects;
5

6 import edu.rpi.cs.tayloj.fluid.calculi.impl.NaturalDeductionPCImpl.Arrow;
7 import edu.rpi.cs.tayloj.fluid.calculi.impl.NaturalDeductionPCImpl.Arrow.Type;
8 import edu.rpi.cs.tayloj.fluid.category.BicartesianClosedCategory;
9 import edu.rpi.cs.tayloj.fluid.category.HasAdjoin;

10 import edu.rpi.cs.tayloj.fluid.category.HasDoubleNegation;
11 import edu.rpi.cs.tayloj.fluid.category.HasIndeterminate;
12 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus;
13 import static edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.*;
14 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Conditional;
15 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Conjunction;
16 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Disjunction;
17 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.Proposition;
18 import edu.rpi.cs.tayloj.fluid.dpl.PropositionalCalculus.PropositionalVariable;
19 import edu.rpi.cs.tayloj.fluid.util.Interner;
20

21 /**
22 * An implementation of the classical natural deduction calculus as a bicartesian closed
23 * category with double negation arrows. This class implements {@link HasIndeterminate}
24 * and {@link HasAdjoin}, but some methods defined by these interfaces will throw
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25 * {@link UnsupportedOperationException} for instances produced by the no-argument
constructor.

26 * However, {@link #adjoin(Proposition)} will return an instance for which those methods
27 * will be properly supported. This is sort of a violation of the Liskov Substitution

Principle,
28 * but it greatly simplifies implementation, and the effects of the violation are

unlikely to be
29 * observed in practice.
30 */
31 public class NaturalDeductionPCImpl
32 implements
33 BicartesianClosedCategory<
34 Proposition,NaturalDeductionPCImpl.Arrow, // Object, Arrow
35 Arrow, Arrow, // Identity, Composite
36 PropositionalVariable, Arrow, // Terminal Type (TRUE), Terminal Arrow
37 Conjunction, Arrow, Arrow, Arrow, // Product Type, Product Arrow, Left Proj., Right Proj.
38 Conditional, Arrow, Arrow, //Exponential Type, Curry, Eval
39 PropositionalVariable, Arrow, // Initial Type (FALSE), Initial Arrow
40 Disjunction, Arrow, Arrow, Arrow // Coproduct Type, Coproduct Arrow, Left Inj., Right Inj.
41 >,
42 HasDoubleNegation<
43 Proposition, Arrow, // Object, Arrow
44 PropositionalVariable, Arrow, // Terminal, Terminal Arrow
45 Conditional, Arrow, Arrow, // Exponential, Curry Arrow, Eval Arrow
46 Arrow // Double Negation Arrow
47 >,
48 HasIndeterminate<Proposition, Arrow, Arrow>,
49 HasAdjoin<Proposition, Arrow, Arrow>
50 {
51 private final Arrow indeterminate;
52 private final NaturalDeductionPCImpl parent;
53

54 private NaturalDeductionPCImpl( Proposition assumption, NaturalDeductionPCImpl parent
) {

55 this.indeterminate = INTERNER.create( Type.Indeterminate, assumption, this );
56 this.parent = parent;
57 }
58

59 /**
60 * Returns a new natural deduction category without an indeterminate.
61 */
62 public NaturalDeductionPCImpl() {
63 this.indeterminate = null;
64 this.parent = null;
65 }
66

67 static class Arrow {
68 private final Object[] arguments;
69 private final Proposition domain;
70 private final Proposition codomain;
71 private final Type type;
72 Arrow( Type type, Proposition domain, Proposition codomain, Object[] arguments ) {
73 Objects.requireNonNull( type );
74 Objects.requireNonNull( domain );
75 Objects.requireNonNull( codomain );
76 Objects.requireNonNull( arguments );
77 this.type = type;
78 this.domain = domain;
79 this.codomain = codomain;
80 this.arguments = Arrays.copyOf( arguments, arguments.length );
81 }
82 Type getType() { return type; }
83 Proposition getDomain() { return domain; }
84 Proposition getCodomain() { return codomain; }
85 Object getArgument(int n ){ return n < arguments.length ? arguments[n] : null; }
86

87 enum Type {
88 Identity, Composite,
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89 Initial, Terminal,
90 Product, LeftProjection, RightProjection,
91 Coproduct, LeftInjection, RightInjection,
92 Curry, Eval,
93 DoubleNegation,
94 Indeterminate
95 }
96

97 @Override
98 public String toString() {
99 return "(->"+type+" "+domain+" "+codomain+")";

100 }
101

102 static boolean isArrowType( Object object, Type type ) {
103 return object instanceof Arrow && ((Arrow)object).getType().equals( type );
104 }
105 }
106

107 private static Interner<Arrow> INTERNER = new Interner<Arrow>() {
108 @Override
109 public Arrow create(Object... key) {
110 switch ((Arrow.Type) key[0] ) {
111 case Identity:
112 Proposition p = (Proposition) key[1];
113 return new Arrow( Type.Identity, p, p, key );
114 case Composite:
115 Arrow g = (Arrow) key[1];
116 Arrow f = (Arrow) key[2];
117 if ( !f.codomain.equals( g.domain ) ) {
118 throw new IllegalArgumentException( "Cannot compose: the codomain of

"+f+" is not the domain of "+g+"." );
119 }
120 else {
121 return new Arrow( Type.Composite, f.domain, g.codomain, key );
122 }
123 case Initial:
124 p = (Proposition) key[1];
125 return new Arrow( Type.Initial, FALSE(), p, key );
126 case Terminal:
127 p = (Proposition) key[1];
128 return new Arrow( Type.Terminal, p, TRUE(), key );
129 case Product:
130 f = (Arrow) key[1];
131 g = (Arrow) key[2];
132 if ( !f.domain.equals( g.domain ) ) {
133 throw new IllegalArgumentException( f+" and "+g+" have different

domains." );
134 }
135 else {
136 return new Arrow( Type.Product, f.domain, and(f.codomain, g.codomain

), key );
137 }
138 case LeftProjection:
139 Conjunction c = (Conjunction) key[1];
140 return new Arrow( Type.LeftProjection, c, c.getLeft(), key );
141 case RightProjection:
142 c = (Conjunction) key[1];
143 return new Arrow( Type.RightProjection, c, c.getRight(), key );
144 case Coproduct:
145 f = (Arrow) key[1];
146 g = (Arrow) key[2];
147 if ( !f.codomain.equals( g.codomain ) ) {
148 throw new IllegalArgumentException( f+" and "+g+" have different

codomains." );
149 }
150 else {
151 return new Arrow( Type.Coproduct, or(f.domain,g.domain), f.codomain,

key );
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152 }
153 case LeftInjection:
154 Disjunction d = (Disjunction) key[1];
155 return new Arrow( Type.LeftInjection, d.getLeft(), d, key );
156 case RightInjection:
157 d = (Disjunction) key[1];
158 return new Arrow( Type.RightInjection, d.getRight(), d, key );
159 case Curry:
160 f = (Arrow) key[1]; // f : p & q→ r
161 c = (Conjunction) f.domain;
162 return new Arrow( Type.Curry, c.getLeft(), implies(c.getRight(),

f.codomain), key );
163 case Eval:
164 Conditional ifPthenQ = (Conditional) key[1];
165 return new Arrow( Type.Eval, and( ifPthenQ, ifPthenQ.getLeft() ),

ifPthenQ.getRight(), key );
166 case DoubleNegation:
167 p = (Proposition) key[1];
168 return new Arrow( Type.DoubleNegation, not(not(p)), p, key );
169 case Indeterminate:
170 p = (Proposition) key[1];
171 return new Arrow( Type.Indeterminate, TRUE(), p, key );
172 default:
173 throw new IllegalArgumentException( key[0] + " is not a legal Arrow

type." );
174 }
175 }
176 };
177

178 @Override
179 public Arrow identity(Proposition object) {
180 return INTERNER.intern( Type.Identity, object );
181 }
182

183 @Override
184 public boolean isIdentity(Object object) {
185 return Arrow.isArrowType( object, Type.Identity );
186 }
187

188 @Override
189 public Arrow compose(Arrow g, Arrow f) {
190 return INTERNER.intern( Type.Composite, g, f );
191 }
192

193 @Override
194 public boolean isComposite(Object object) {
195 return Arrow.isArrowType( object, Type.Composite );
196 }
197

198 @Override
199 public Arrow compositeAfter(Arrow h) {
200 return (Arrow) h.getArgument(1);
201 }
202

203 @Override
204 public Arrow compositeBefore(Arrow h) {
205 return (Arrow) h.getArgument(2);
206 }
207

208 @Override
209 public Proposition domain(Arrow arrow) {
210 return arrow.getDomain();
211 }
212

213 @Override
214 public Proposition codomain(Arrow arrow) {
215 return arrow.getCodomain();
216 }
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217

218 @Override
219 public boolean isArrow(Object object) {
220 return object instanceof Arrow;
221 }
222

223 @Override
224 public PropositionalVariable terminal() {
225 return PropositionalCalculus.TRUE();
226 }
227

228 @Override
229 public boolean isTerminal(Object object) {
230 return PropositionalCalculus.TRUE().equals( object );
231 }
232

233 @Override
234 public Arrow terminalArrow(Proposition object) {
235 return INTERNER.intern( Type.Terminal, object );
236 }
237

238 @Override
239 public boolean isTerminalArrow(Object object) {
240 return Arrow.isArrowType( object, Type.Terminal );
241 }
242

243 @Override
244 public Conjunction product(Proposition left, Proposition right) {
245 return and(left,right);
246 }
247

248 @Override
249 public boolean isProduct(Object object) {
250 return Conjunction.class.isInstance( object );
251 }
252

253 @Override
254 public Arrow leftProjection(Conjunction product) {
255 return INTERNER.intern( Type.LeftProjection, product );
256 }
257

258 @Override
259 public boolean isLeftProjection(Object object) {
260 return Arrow.isArrowType( object, Type.LeftProjection );
261 }
262

263 @Override
264 public Arrow rightProjection(Conjunction product) {
265 return INTERNER.intern( Type.RightProjection, product );
266 }
267

268 @Override
269 public boolean isRightProjection(Object object) {
270 return Arrow.isArrowType( object, Type.RightProjection );
271 }
272

273 @Override
274 public Arrow productArrow(Arrow f, Arrow g) {
275 return INTERNER.intern( Type.Product, f, g );
276 }
277

278 @Override
279 public boolean isProductArrow(Object object) {
280 return Arrow.isArrowType( object, Type.Product );
281 }
282

283 @Override
284 public Arrow productArrowLeft(Arrow fg) {
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285 return (Arrow) fg.getArgument(1);
286 }
287

288 @Override
289 public Arrow productArrowRight(Arrow fg) {
290 return (Arrow) fg.getArgument(2);
291 }
292

293 @Override
294 public Conditional exponential(Proposition base, Proposition exponent) {
295 return PropositionalCalculus.implies( exponent, base );
296 }
297

298 @Override
299 public boolean isExponential(Object object) {
300 return PropositionalCalculus.Conditional.class.isInstance( object );
301 }
302

303 @Override
304 public Arrow curry(Arrow g) {
305 return INTERNER.intern( Type.Curry, g );
306 }
307

308 @Override
309 public boolean isCurryArrow(Object object) {
310 return Arrow.isArrowType( object, Type.Curry );
311 }
312

313 @Override
314 public Arrow curriedArrow(Arrow curriedG) {
315 return (Arrow) curriedG.getArgument(1);
316 }
317

318 @Override
319 public Arrow eval(Conditional exponential) {
320 return INTERNER.intern( Type.Eval, exponential );
321 }
322

323 @Override
324 public boolean isEvalArrow(Object object) {
325 return Arrow.isArrowType( object, Type.Eval );
326 }
327

328 @Override
329 public PropositionalVariable initial() {
330 return PropositionalCalculus.FALSE();
331 }
332

333 @Override
334 public boolean isInitial(Object object) {
335 return FALSE().equals( object );
336 }
337

338 @Override
339 public Arrow initialArrow(Proposition object) {
340 return INTERNER.intern( Type.Initial, object );
341 }
342

343 @Override
344 public boolean isInitialArrow(Object object) {
345 return Arrow.isArrowType( object, Type.Initial );
346 }
347

348 @Override
349 public Disjunction coproduct(Proposition left, Proposition right) {
350 return PropositionalCalculus.or( left, right );
351 }
352
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353 @Override
354 public boolean isCoproduct(Object object) {
355 return PropositionalCalculus.Disjunction.class.isInstance( object );
356 }
357

358 @Override
359 public Arrow coproductArrow(Arrow left, Arrow right) {
360 return INTERNER.intern( Type.Coproduct, left, right );
361 }
362

363 @Override
364 public boolean isCoproductArrow(Object object) {
365 return Arrow.isArrowType( object, Type.Coproduct );
366 }
367

368 @Override
369 public Arrow coproductArrowLeft(Arrow fg) {
370 return (Arrow) fg.getArgument(1);
371 }
372

373 @Override
374 public Arrow coproductArrowRight(Arrow fg) {
375 return (Arrow) fg.getArgument(2);
376 }
377

378 @Override
379 public Arrow leftInjection(Disjunction coproduct) {
380 return INTERNER.intern( Type.LeftInjection, coproduct );
381 }
382

383 @Override
384 public boolean isLeftInjection(Object object) {
385 return Arrow.isArrowType( object, Type.LeftInjection );
386 }
387

388 @Override
389 public Arrow rightInjection(Disjunction coproduct) {
390 return INTERNER.intern( Type.RightInjection, coproduct );
391 }
392

393 @Override
394 public boolean isRightInjection(Object object) {
395 return Arrow.isArrowType( object, Type.RightInjection );
396 }
397

398 @Override
399 public Arrow doubleNegation(Proposition object) {
400 return INTERNER.intern( Type.DoubleNegation, object );
401 }
402

403 @Override
404 public boolean isDoubleNegation(Object object) {
405 return Arrow.isArrowType( object, Type.DoubleNegation );
406 }
407

408 @Override
409 public Proposition doubleNegationFormula(Arrow a) {
410 return (Proposition) a.getArgument(1);
411 }
412

413 /*
414 * We lie a little bit when we have NaturalDeductionPCImpl implement
415 * the HasIndeterminate and HasAdjoin methods. The 0-argument constructor
416 * leaves the fields for parent and indeterminate as null, which means
417 * that some of these methods will throw UnsupportedOperationExceptions.
418 * When the adjoin(Proposition) method is used, though, a NaturalDeductionPCImpl
419 * is returned that does have the appropriate fields. In the mapping from
420 * the axiomatic category to the natural deduction category, we entirely
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421 * ignore these methods, but in the deduction theorem, we map from a
422 * NaturalDeductionPCImpl (with a non-null parent) to its parent.
423 */
424

425 @Override
426 public NaturalDeductionPCImpl adjoin(Proposition object) {
427 return new NaturalDeductionPCImpl( object, this );
428 }
429

430 @Override
431 public NaturalDeductionPCImpl parent() {
432 if ( parent != null ) {
433 return parent;
434 }
435 else {
436 throw new UnsupportedOperationException( "This category does not have a

parent." );
437 }
438 }
439

440 @Override
441 public Arrow indeterminate() {
442 if ( indeterminate != null ) {
443 return indeterminate;
444 }
445 else {
446 throw new UnsupportedOperationException( "This category does not have an

indeterminate." );
447 }
448 }
449

450 @Override
451 public boolean isIndeterminate(Object object) {
452 return Arrow.isArrowType( object, Type.Indeterminate ) &&
453 ((Arrow)object).getArgument(2) == this;
454 }
455 }

E.3.2 pc-nd-cdpl.lm

The standard language code simply wraps the methods defined in the Java code, and defines pattern

matchers.

1 (load "include/pc.lm")
2 (load "include/categories.lm")
3

4 (let ((%nd (edu.rpi.cs.tayloj.fluid.calculi.impl.NaturalDeductionPCImpl.)))
5 (define (current-category)
6 %nd))
7

8 (define false-elim initial)
9 (define-match-alias ->false-elim ->initial)

10

11 (define true-intro terminal)
12 (define-match-alias ->true-intro ->terminal)
13

14 (define left-and pi-left)
15 (define-match-alias ->left-and ->pi-left)
16

17 (define right-and pi-right)
18 (define-match-alias ->right-and ->pi-right)
19

20 (define both product-arrow)
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21 (define-match-alias ->both ->product)
22

23 (define left-or iota-left)
24 (define-match-alias ->left-or ->iota-left)
25

26 (define right-or iota-right)
27 (define-match-alias ->right-or ->iota-right)
28

29 (define cd coproduct-arrow)
30 (define-match-alias ->cd ->coproduct)
31

32 (define mp eval)
33 (define-match-alias ->mp ->eval)
34

35 (define discharge curry)
36 (define-match-alias ->discharge ->curry)
37

38 (define dn double-negation)
39 (define-match-alias ->dn ->double-negation)
40

41 (define assumption indeterminate)
42 (define-match-alias ->assumption ->indeterminate)
43

44 ;;; BEGIN ndAssumeFunction
45 (define (%assume p d k)
46 (dlet ((m (let* ((c (current-category))
47 (cx (.adjoin c p)))
48 (define (current-category) cx)
49 (try/finally
50 (k (!d (!assumption)))
51 (define (current-category) c)))))
52 (!discharge (!left-and* (!m)))))
53 ;;; END ndAssumeFunction
54

55 ;;; BEGIN ndAssume
56 (define-macro (assume form end)
57 (destructuring-bind (_ (prop var) . body) form
58 ‘(!%assume ,prop (mu (,var) ,@body) dtm)))
59 ;;; END ndAssume
60

61 ;;; BEGIN dtm
62 (define (dtm x)
63 ;; A deduction theorem mapping to be called in category C [x],
64 ;; (with assumption x : >→ A) with a C [x] arrow
65 ;; f : B→ C. Returns a method to be called in C
66 ;; that will derive an arrow B & A→ C & A. (From that
67 ;; arrow, it’s trivial to derive an arrow B→ A⊃ C.)
68 (let* ((a (codomain (!assumption)))
69 (-xA (mu (f) (!times f (!identity a)))))
70 (match
71 x
72 ((->true-intro b) (mu () (!-xA (!true-intro b))))
73 ((->false-elim b) (mu () (!-xA (!false-elim b))))
74 ((->left-and b c) (mu () (!-xA (!left-and b c))))
75 ((->right-and b c) (mu () (!-xA (!right-and b c))))
76 ((->left-or b c) (mu () (!-xA (!left-or b c))))
77 ((->right-or b c) (mu () (!-xA (!right-or b c))))
78 ((->dn b) (mu () (!-xA (!dn b))))
79 ((->mp b c) (mu () (!-xA (!mp b c))))
80 ((->identity p)
81 (mu () (!identity (and p a))))
82 ((->compose g f)
83 (let ((gm (dtm g))
84 (fm (dtm f)))
85 (mu () (!compose (!gm) (!fm)))))
86 ((->both f g)
87 (let ((fm (dtm f))
88 (gm (dtm g)))
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89 (mu ()
90 (dlet* ((ff (!fm))
91 (gg (!gm)))
92 (!both (!both (!left-and* ff)
93 (!left-and* gg))
94 (!right-and* ff))))))
95 ((->cd f g)
96 (let ((fm (dtm f))
97 (gm (dtm g)))
98 (mu ()
99 (dlet ((h (!-xA (!cd (!discharge (!fm))

100 (!discharge (!gm))))))
101 (!mp* (!left-and* h)
102 (!right-and* h))))))
103 ((->discharge f)
104 (let ((fm (dtm f)))
105 (mu ()
106 (dlet ((w (!fm)))
107 (dmatch w
108 ((-> (and (and b c) a) (and d a))
109 (dlet* ((x (!identity (and (and b a) c)))
110 (y (!discharge
111 (!left-and*
112 (!compose
113 (!fm)
114 (!both (!both (!left-and* (!left-and* x))
115 (!right-and* x))
116 (!right-and* (!left-and* x))))))))
117 (!both y (!right-and b a)))))))))
118 ((->assumption a)
119 (mu ()
120 (!both (!right-and TRUE a)
121 (!right-and TRUE a))))
122 ;; any other arrow must be an indeterminate from an ancestor, so
123 ;; it should be safe to claim it, since dtm should only be called
124 ;; from within an (assume ...).
125 ((-> _ _)
126 (mu ()
127 (!-xA (!claim x)))))))
128 ;;; END dtm
129

130 ;; A very common pattern in taking an existing arrow f : A→ B
131 ;; and composing it with the result of some method m that produces an
132 ;; arrow g : B→ C. We call a method that combines these m*.
133 ;; For instance right-and* can be called with an arrow
134 ;; f : A→ B & C and will return an arrow π′ f : A→ C.
135 ;; For some rules, it makes more sense to compose from the other side, and
136 ;; these variants begin with *.
137

138 (define (false-elim* f p)
139 ;; f : x →⊥/⊥p f : x → p
140 (!compose (!false-elim p) ; ⊥p : ⊥→ p
141 f)) ; f : x → bot
142

143 (define (*true-intro f p)
144 (!compose ; f>p : p→ q
145 f ; f : >→ q
146 (!true-intro p))) ; >p : p→>
147

148 (define (left-and* f)
149 ;; f : x → p & q/π f : x → p
150 (dmatch f
151 ((-> _ (and q r))
152 (!compose (!left-and q r) f))))
153

154 (define (*left-and f q)
155 ;; f : p→ x/ f π: p & q→ x
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156 (dmatch f
157 ((-> p _)
158 (!compose f (!left-and p q)))))
159

160 (define (right-and* f)
161 ;; f : x → p & q/π′ f : x → q
162 (dmatch f
163 ((-> _ (and q r))
164 (!compose (!right-and q r) f))))
165

166 (define (*right-and f p)
167 ;; f : q→ x/ f π′ : p & q→ x
168 (dmatch f
169 ((-> q _)
170 (!compose f (!right-and p q)))))
171

172 (define (times f g)
173 ;; f : a→ c, g : b→ d/ f & g : a & b→ c & d
174 (dmatch (list f g)
175 ((list (-> a c) (-> b d))
176 (!both
177 (!compose f (!left-and a b))
178 (!compose g (!right-and a b))))))
179

180 (define (left-or* f q)
181 ;; f : x → p/ι f : x → p ∨ q
182 (dmatch f
183 ((-> _ p)
184 (!compose (!left-or p q) f))))
185

186 (define (*left-or f)
187 ;; f : p ∨ q→ x/ f ι : p→ x
188 (dmatch f
189 ((-> (or p q) _)
190 (!compose f (!left-or p q)))))
191

192 (define (right-or* f p)
193 ;; f : x → q/ι′ f : x → p ∨ q
194 (dmatch f
195 ((-> _ q)
196 (!compose (!right-or p q) f))))
197

198 (define (*right-or f)
199 ;; f : p ∨ q→ x/ f ι′ : q→ x
200 (dmatch f
201 ((-> (or p q) _)
202 (!compose f (!right-or p q)))))
203

204 (define (cd* h f g)
205 ;; h: x → a ∨ b, f : a→ c, g : b→ c/[ f , g]h: x → c
206 (dmatch (list h f g)
207 ((list (-> _ (or a b)) (-> a c) (-> b c))
208 (!compose (!cd f g) h))))
209

210 (define (recharge f)
211 ;; AKA uncurry. Opposite of discharge.
212 (dmatch f
213 ((-> a (if b c))
214 (!compose ; a & b→ c
215 (!mp c b) ; b ⊃ c & b→ c
216 (!times f (!identity b)))))) ; a & b→ (b ⊃ c)& b
217

218 (define (cd** h f g)
219 (dmatch (list h f g)
220 ((list (-> x (or a b))
221 (-> x (if a c))
222 (-> x (if b c)))
223 (!mp* ; x → c
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224 (!compose ; x → x ⊃ c
225 (!cd ; a ∨ b→ x ⊃ c
226 (!discharge (!*swap (!recharge f))) ; a→ x ⊃ c
227 (!discharge (!*swap (!recharge g)))) ; b→ x ⊃ c
228 h) ; x → a ∨ b
229 (!identity x))))) ; x → x
230

231 (define (mp* f g)
232 ;; f : a→ b ⊃ c, g : a→ b/eval〈 f , g〉: a→ c
233 (dmatch (list f g)
234 ((list (-> a (if b c)) (-> a b))
235 (!compose (!mp c b) (!both f g)))))
236

237 (define (discharge* n f)
238 ;; f : a & · · · → c/λn f : a ⊃ · · · ⊃ c
239 (dcond (== 0 n)
240 (!claim f)
241 (!discharge* (- n 1)
242 (!discharge f))))
243

244 (define (dn* f)
245 ;; f : p→∼∼q/dnq f : p→ q
246 (dmatch f
247 ((-> _ (not (not p)))
248 (!compose (!dn p) f))))
249

250 (define (*dn f)
251 ;; f : p→ q/ f dnp : ∼∼ p→ q
252 (!compose f (!dn (domain f))))
253

254 ;; Some other categorical utilities for swapping the orders of
255 ;; commuative operators.
256

257 (define (swap* f)
258 ;; f : x → a · b/g f : x → b · a
259 (dmatch f
260 ((-> _ (and a b))
261 (!both (!right-and* f)
262 (!left-and* f)))
263 ((-> _ (or a b))
264 (!cd* f
265 (!right-or b a)
266 (!left-or b a)))))
267

268 (define (*swap f)
269 ;; f : a · b→ x/ f g : b · a→ x
270 (dmatch f
271 ((-> (and a b) _)
272 (!compose f (!swap* (!identity (and b a)))))
273 ((-> (or a b) _)
274 (!compose f (!swap* (!identity (or b a)))))))
275

276 (define (distribute a b c)
277 ;; c × (a+ b)→ (c × a) + (c × b)
278 (!*swap
279 (!compose (!eval (or (and c a) (and c b)) c)
280 (!times (!cd (!discharge (!left-or* (!swap* (!identity (and a c)))
281 (and c b)))
282 (!discharge (!right-or* (!swap* (!identity (and b c)))
283 (and c a))))
284 (!identity c)))))
285

286 ;; Examples
287

288 ;;; BEGIN example1
289 (define (example)
290 ;; >→ (∼ a ∨ b) ⊃ (a ⊃ b)
291 (assume ((or (not a) b) w)
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292 (!cd** w
293 (assume ((not a) x)
294 (assume (a y)
295 (!false-elim* (!mp* x y) b)))
296 (assume (b x)
297 (assume (a _)
298 (!claim x))))))
299

300 ; > (!example)
301 ; (->Curry TRUE (if (or (not a) b) (if a b)))
302 ;;; END example1
303

304

305

306 (declare-variable a)
307 (declare-variable b)
308 (declare-variable c)

E.4 The Standard Library

1 ;; JavaDot Notation interoperability
2

3 (define (javaDotConstructor classname)
4 (lambda args
5 (apply javaConstructor (cons classname args))))
6

7 (define (javaDotInstanceMethod methodname)
8 (lambda (instance . args)
9 (apply javaInstanceMethod (cons instance (cons methodname args)))))

10

11 (define (javaDotInstanceField fieldname)
12 (lambda (instance)
13 (javaInstanceField instance fieldname)))
14

15 (define (javaDotStaticMethod class-and-method-name)
16 (lambda args
17 (apply javaStaticMethod (cons class-and-method-name args))))
18

19 (define (javaDotStaticField class-and-field-name)
20 (javaStaticField class-and-field-name))
21

22 ;; input and output streams
23

24 (define +out+ java.lang.System.out$)
25 (define +err+ java.lang.System.err$)
26

27 ;; == and equals
28

29 (define (equals x y)
30 (java.util.Objects.equals x y))
31

32 (define (== x y)
33 (edu.rpi.cs.tayloj.fluid.standard.Util.eq x y))
34

35 ;; Basic List Utilities
36

37 (define first car)
38 (define rest cdr)
39 (define (second l) (car (cdr l)))
40 (define (third l) (car (cdr (cdr l))))
41 (define (list . elements) elements)
42 (define nil ’())
43
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44 ;; Boolean
45

46 (define true (equals nil nil))
47 (define false (equals nil true))
48

49 (define (~ exp)
50 (cond exp false
51 true))
52

53 (define-macro (|| form env)
54 (list ’cond (second form)
55 true
56 (third form)))
57

58 (define-macro (&& form env)
59 (list ’cond (list ’~ (second form))
60 false
61 (third form)))
62

63 ;; arithmetic
64

65 (define (+ . numbers)
66 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.add
67 0 numbers))
68

69 (define (- x . xs)
70 (cond (endp xs)
71 (edu.rpi.cs.tayloj.fluid.standard.Util.subtract 0 x)
72 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.subtract
73 x xs)))
74

75 (define (* . numbers)
76 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.multiply
77 1 numbers))
78

79 (define (/ x . xs)
80 (cond (endp xs)
81 (edu.rpi.cs.tayloj.fluid.standard.Util.divide 1 x)
82 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.divide
83 x xs)))
84

85 (define (% x y)
86 (edu.rpi.cs.tayloj.fluid.standard.Util.modulo x y))
87

88 (define (== x . ys)
89 (every (lambda (y)
90 (edu.rpi.cs.tayloj.fluid.standard.Util.eq x y))
91 ys))
92

93 (define (/= x . ys)
94 ;; returns true if all elements are pairwise disjoint; This
95 ;; requires an O(n2) check.
96 (cond (endp ys) true
97 (&& (endp (member-if (lambda (y)
98 (== x y))
99 ys))

100 (apply /= ys))))
101

102 (define (< x . xs)
103 (every (lambda (x y)
104 (edu.rpi.cs.tayloj.fluid.standard.Util.lessThan x y))
105 (cons x xs)
106 xs))
107

108 (define (<= x . xs)
109 (every (lambda (x y)
110 (|| (< x y) (== x y)))
111 (cons x xs)
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112 xs))
113

114 (define (> x . xs)
115 (every (lambda (x y)
116 (< y x))
117 (cons x xs)
118 xs))
119

120 (define (>= x . xs)
121 (every (lambda (x y)
122 (<= y x))
123 (cons x xs)
124 xs))
125

126 (define (lognot x)
127 (edu.rpi.cs.tayloj.fluid.standard.Util.bitwiseNot x))
128

129 (define (logand . xs)
130 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.bitwiseAnd
131 -1 xs))
132

133 (define (logxor . xs)
134 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.bitwiseXor
135 0 xs))
136

137 (define (logior . xs)
138 (foldl edu.rpi.cs.tayloj.fluid.standard.Util.bitwiseOr
139 0 xs))
140

141 ;; More Cons/List Utilities
142

143 (define (consp object)
144 (.isInstance edu.rpi.cs.tayloj.fluid.sexp.Cons.class object))
145

146 (define (atom x)
147 (~ (consp x)))
148

149 (define (set-car cons object)
150 (.setCar cons object))
151

152 (define (set-cdr cons object)
153 (.setCdr cons object))
154

155 ;; Symbol utilities
156

157 (define (intern string)
158 (edu.rpi.cs.tayloj.fluid.sexp.Symbol.intern string))
159

160 (define (make-symbol string)
161 (edu.rpi.cs.tayloj.fluid.sexp.Symbol.makeSymbol string))
162

163 (define (gensym . args)
164 (apply edu.rpi.cs.tayloj.fluid.sexp.Symbol.gensym args))
165

166 (define (unintern symbol)
167 (edu.rpi.cs.tayloj.fluid.sexp.Symbol.unintern symbol))
168

169 (define (symbolp object)
170 (.isInstance edu.rpi.cs.tayloj.fluid.sexp.Symbol.class object))
171

172 (define (symbol-name symbol)
173 (.symbolName symbol))
174

175 ;; List Utilities
176

177 (define (endp x)
178 (equals nil x))
179
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180 (define (listp x)
181 (|| (endp x)
182 (consp x)))
183

184 (define (foldl function init list)
185 (cond (endp list)
186 init
187 (foldl function
188 (function init (first list))
189 (rest list))))
190

191 (define (complement function)
192 (lambda args
193 (~ (apply function args))))
194

195 (define (every function . lists)
196 (cond (some endp lists) true
197 (&& (apply function (mapcar first lists))
198 (apply every
199 function
200 (mapcar rest lists)))))
201

202 (define (some function . lists)
203 (~ (apply every (complement function) lists)))
204

205 (define (notevery function . lists)
206 (apply some (complement function) lists))
207

208 (define (notany function . lists)
209 (apply every (complement function) lists))
210

211 (define (reverse list)
212 (foldl (lambda (acc x)
213 (cons x acc))
214 nil
215 list))
216

217 ;; Implementation of quasiquote (backquote) and unquote. The reader
218 ;; creates the appropriate (quasiquote ...) and (unquote ...) forms
219 ;; from ‘form and ,form respectively, and we need only macroexpand.
220

221 (define (append x y)
222 (cond (endp x) y
223 (cons (car x)
224 (append (cdr x) y))))
225

226 (define-macro (unquote form env)
227 (error "unquote encountered outside backquote: " form))
228

229 (define-macro (quasiquote form env)
230 (expand-qq (second form) 0))
231

232 (define (quasiquotep form)
233 (&& (consp form)
234 (== ’quasiquote (first form))
235 (|| (== 2 (length form))
236 (error "malformed quasiquote: " form))))
237

238 (define (unquote-splicing-p form)
239 (&& (consp form)
240 (== ’unquote-splicing (first form))
241 (|| (== 2 (length form))
242 (error "malformed unquote-splicing: " form))))
243

244 (define (unquotep form)
245 (&& (consp form)
246 (== ’unquote (first form))
247 (|| (== 2 (length form))
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248 (error "malformed unquote: " form))))
249

250 (define (expand-qq form depth)
251 (cond (quasiquotep form)
252 (list ’list ’’quasiquote (expand-qq (second form) (+ depth 1)))
253 (cond (unquotep form)
254 (cond (equals 0 depth)
255 (second form)
256 (list ’list ’’unquote (expand-qq (second form) (- depth 1))))
257 (cond (~ (consp form))
258 (list ’quote form)
259 (cond (unquote-splicing-p (car form))
260 (cond (equals 0 depth)
261 (list ’append
262 (second (car form))
263 (expand-qq (cdr form) depth))
264 (list ’list
265 (list ’list ’’unquote-splicing (expand-qq (second

(car form)) (- depth 1)))
266 (expand-qq (cdr form) depth)))
267 (list ’cons
268 (expand-qq (car form) depth)
269 (expand-qq (cdr form) depth)))))))
270

271 (define (1+ n) (+ n 1))
272 (define (1- n) (- n 1))
273

274 (define (length list)
275 (foldl (lambda (len element)
276 (1+ len))
277 0
278 list))
279

280 (define (nthcdr n list)
281 (cond (equals 0 n)
282 list
283 (nthcdr (1- n)
284 (rest list))))
285

286 (define (nth n list)
287 (first (nthcdr n list)))
288

289 (define (foldr function list init)
290 (cond (endp list)
291 init
292 (function (first list)
293 (foldr function
294 (rest list)
295 init))))
296

297 (define (member-if predicate list)
298 ;; member returns the first tail of list whose car satisfies the
299 ;; predicate
300 (cond (|| (endp list)
301 (predicate (first list)))
302 list
303 (member-if predicate (rest list))))
304

305 (define (member element list)
306 ;; member returns the first tail of the list whose car equals
307 ;; element, or the empty list if element is not a member of list.
308 (member-if (lambda (x)
309 (equals x element))
310 list))
311

312 (define (some predicate list)
313 (~ (endp (member-if predicate list))))
314
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315 ;; Association List Utilities
316

317 (define (pairlis keys values)
318 (mapcar cons keys values))
319

320 (define (assoc item alist)
321 (cond (endp alist)
322 nil
323 (cond (equals item (car (first alist)))
324 (first alist)
325 (assoc item (rest alist)))))
326

327 (define (acons key value alist)
328 (list* (cons key value) alist))
329

330 ;; Spreadable arglists
331

332 (define (spread-arglist arglist)
333 (cond (~ (consp arglist))
334 (error "not a proper list: " arglist)
335 (cond (endp (cdr arglist))
336 (car arglist)
337 (cons (car arglist)
338 (spread-arglist (cdr arglist))))))
339

340 (define (list* e . es)
341 (spread-arglist (cons e es)))
342

343 (define (equals x y)
344 (java.util.Objects.equals x y))
345

346 (define (toString x)
347 (java.util.Objects.toString x))
348

349 (define null
350 ;; the superclass of Object is null
351 (.getSuperclass java.lang.Object.class))
352

353 ;; mapcar
354

355 (define (mapcar function list)
356 ;; a primitive mapcar that takes a function and a single list is
357 ;; used to ’bootstrap’ the proper mapcar that takes any (positive,
358 ;; non-zero) number of lists
359 (cond (endp list) ’()
360 (cons (function (first list))
361 (mapcar function (rest list)))))
362

363 ((lambda (mapcar) ; the primitive mapcar
364 (define (mapcar function list . lists)
365 ;; a full-fledged mapcar that can operate on one or more
366 (cond (|| (endp list) (some endp lists))
367 ’()
368 (cons (apply function
369 (first list)
370 (mapcar first lists))
371 (apply mapcar
372 function
373 (rest list)
374 (mapcar rest lists)))))
375 ) mapcar)
376

377 ;; seq and dseq
378

379 (define (phrase-sequencer bind-one)
380 (lambda (form env)
381 (cond (== 1 (length form))
382 (error "At least one phrase required: " form)
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383 ((lambda (sentinel)
384 (foldr (lambda (phrase more-phrase)
385 (cond (== more-phrase sentinel)
386 phrase
387 ‘(,bind-one ((,(gensym) ,phrase))
388 ,more-phrase)))
389 (rest form)
390 sentinel))
391 (cons nil nil)))))
392

393 (define-macro seq (phrase-sequencer ’let))
394 (define-macro dseq (phrase-sequencer ’dlet))
395

396 (define-macro progn (phrase-sequencer ’let)) ; for the Common Lispers
397 (define-macro dprogn (phrase-sequencer ’dlet))
398

399 ;; Anonymous functions/methods with sequenced body forms
400

401 (define (n-ary-greek greek sequencer form)
402 (cond (== 3 (length form))
403 form
404 ‘(,greek ,(second form)
405 (,sequencer ,@(rest (rest form))))))
406

407 (define-macro (lambda form env)
408 (n-ary-greek ’lambda ’progn form))
409

410 (define-macro (mu form env)
411 (n-ary-greek ’mu ’dseq form))
412

413 ;; let/dlet
414

415 (define-macro (let form env)
416 ‘((lambda ,(mapcar first (second form))
417 ,@(rest (rest form)))
418 ,@(mapcar second (second form))))
419

420 (define-macro (dlet form env)
421 (let ((vars (mapcar first (second form)))
422 (values (mapcar second (second form)))
423 (body (rest (rest form))))
424 ‘(!(mu ,vars ,@body) ,@values)))
425

426 (define (bind* bind)
427 (lambda (form env)
428 (foldr (lambda (binding body)
429 ‘(,bind (,binding) ,body))
430 (second form)
431 ‘(,bind () ,@(rest (rest form))))))
432

433 (define-macro let* (bind* ’let))
434 (define-macro dlet* (bind* ’dlet))
435

436 ;; destructuring-bind
437

438 (define (destructure pattern object body-fn)
439 (cond (symbolp pattern)
440 (cond (== nil pattern)
441 (body-fn)
442 ‘(let ((,pattern ,object))
443 ,(body-fn)))
444 (cond (consp pattern)
445 (let ((obj-var (gensym)))
446 ‘(let ((,obj-var ,object))
447 ,(destructure (car pattern)
448 ‘(car ,obj-var)
449 (lambda ()
450 (destructure (cdr pattern)
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451 ‘(cdr ,obj-var)
452 body-fn)))))
453 (error "malformed destructure: " pattern object))))
454

455 (define-macro (destructuring-bind form env)
456 (destructure (second form)
457 (third form)
458 (lambda ()
459 ‘(progn ,@(rest (rest (rest form)))))))
460

461 ;; check
462

463 (define-macro (check form env)
464 (destructuring-bind (check . cases) form
465 (foldr (lambda (c1 else)
466 (destructuring-bind (test . forms) c1
467 ‘(cond ,(cond (equals test ’else)
468 true
469 test)
470 (progn ,@forms)
471 ,else)))
472 cases
473 ‘(error "No case in " ’,cases " succeeded."))))
474

475 (define-macro (dcheck form env)
476 (destructuring-bind (_ . cases) form
477 ‘(! ,(foldr (lambda (case else)
478 (destructuring-bind (test . deductions) case
479 ‘(cond ,(cond (equals test ’else)
480 true
481 test)
482 (mu () ,@deductions)
483 ,else)))
484 cases
485 ‘(mu ()
486 (!derror "No case in " ’,cases " succeeded."))))))
487

488 ;; letrec
489

490 (define-macro (letrec form env)
491 (destructuring-bind (nil bindings . forms) form
492 ‘(let ,(mapcar (lambda (binding)
493 (destructuring-bind (var val) binding
494 (list var nil)))
495 bindings)
496 ,@(mapcar (lambda (binding)
497 ‘(set ,@binding))
498 bindings)
499 ,@forms)))
500

501 (define-macro (dletrec form env)
502 (destructuring-bind (_ bindings . deductions) form
503 ‘(!(letrec ,bindings (mu () ,@deductions)))))
504

505 ;; nlet
506

507 (define-macro (nlet form env)
508 (destructuring-bind (nil name bindings . body) form
509 (let ((fun ‘(lambda ,(mapcar first bindings) ,@body))
510 (arguments (mapcar second bindings)))
511 ‘(letrec ((,name ,fun))
512 (,name ,@arguments)))))
513

514 ;; with-gensyms
515

516 (define-macro (with-gensyms form env)
517 (destructuring-bind (wg vars . body) form
518 ‘(let ,(mapcar (lambda (var)
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519 ‘(,var (gensym)))
520 vars)
521 ,@body)))
522

523 ;; Pattern Matching
524

525 (letrec
526 (
527 ;; an association list mapping symbols to expander functions
528 (expanders ’())
529

530 ;; store an expander function in expanders
531 (set-expander
532 (lambda (name matcher)
533 (set expanders (acons name matcher expanders))))
534

535 ;; retrieve an expander function from expanders
536 (get-expander
537 (lambda (name)
538 (assoc name expanders)))
539

540 ;; expand a number of patterns and objects
541 (expand-matches
542 (lambda (patterns objects vars fail-fn body-fn)
543 (check
544 ;; patterns and objects should run out at the same
545 ;; time, at which point we execute the body
546 ((&& (endp patterns) (endp objects))
547 (body-fn vars))
548 ;; if they don’t it’s an error
549 ((|| (endp patterns) (endp objects))
550 (error "mismatched patterns and objects: " patterns objects))
551 ;; expand the first pattern with the first object-var where
552 ;; the body will be generated by calling expand-matches
553 ;; (via em) recursively.
554 (else
555 (expand-match (first patterns)
556 (first objects)
557 vars
558 fail-fn
559 (lambda (vars)
560 (expand-matches (rest patterns)
561 (rest objects)
562 vars
563 fail-fn
564 body-fn)))))))
565

566 ;; expand a single pattern and object
567 (expand-match
568 (lambda (pattern object vars fail-fn body-fn)
569 (check
570 ;; _ is a wildcard that introduces no bindings
571 ((== ’_ pattern)
572 (body-fn vars))
573 ;; a symbol introduces a single binding
574 ((symbolp pattern)
575 (check
576 ;; if not a member of vars, then bind it and call the body
577 ;; with the extended list of vars.
578 ((endp (member pattern vars))
579 ‘(let ((,pattern ,object))
580 ,(body-fn (list* pattern vars))))
581 ;; but if it is a member of vars, then it’s already been
582 ;; bound, and we check that the previously established value
583 ;; is the same as the present value.
584 (else
585 ‘(check
586 ((~ (equals ,pattern ,object))
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587 ,(fail-fn))
588 (else
589 ,(body-fn vars))))))
590 ;; a non cons, non symbol object is an equals literal
591 ((~ (consp pattern))
592 ‘(check
593 ((~ (equals ’,pattern ,object))
594 ,(fail-fn))
595 (else ,(body-fn vars))))
596 ;; otherwise some (op . patterns)
597 (else
598 (with-gensyms (objx)
599 (destructuring-bind (op . patterns) pattern
600 (let ((expander (get-expander op)))
601 (check
602 ((endp expander)
603 (error "No expander for " op))
604 (else
605 ‘(let ((,objx ,object))
606 ,((cdr expander)
607 patterns objx vars
608 fail-fn body-fn)))))))))))
609

610 ;; matching is not significantly more complicated in the lambda-mu
611 ;; calculus than in the pure lambda calculus, even though there are
612 ;; both expressions and deductions in the lambda-mu calculus. A given
613 ;; matching construct XMATCH that has the syntax:
614 ;;
615 ;; (xmatch object
616 ;; (pattern1 phrases1...)
617 ;; ...
618 ;; (patternN phrasesN...))
619 ;;
620 ;; is compiled into a try expression that tries matching the object
621 ;; to each patterni in succession. When some patterni matches, the
622 ;; try expression returns a callable (either anonymous function
623 ;; (lambda () phrasesi) or an anonymous method (mu () phrasesi)).
624 ;; The result is then invoked (either as a function application or
625 ;; a method invocation) with zero arguments. Returning the phasesi
626 ;; in a callable in this way both ensures that the phrases keep the
627 ;; lexical bindings established by the pattern matching, and
628 ;; ensures that only errors thrown by the pattern matching code (as
629 ;; opposed to the phrasesi) will be caught by the try expression.
630 ;;
631 ;; Matcher implements this technique. Since deductions must be
632 ;; syntactically recognizable, matcher takes an xapply argument which
633 ;; is a list of symbols to splice into a call site (which makes the
634 ;; call either an function application (an expression) or a method
635 ;; invocation (a deduction)) and an xlambda (either the symbol lambda
636 ;; or the symbol mu) for wrapping up the phrases.
637 (matcher
638 (lambda (xapply xlambda)
639 (lambda (form env)
640 (destructuring-bind (nil object . clauses) form
641 (with-gensyms (obj)
642 ;; the outermost layer of xapply/xlambda (obj) here binds the
643 ;; object that will be matched. The call to the xlambda
644 ;; produced by a matching clause is inside this scope, so
645 ;; that if the object form is a deduction, its result is in
646 ;; the assumption base when the body is evaluated.
647 ‘(,@xapply (,xlambda (,obj)
648 (,@xapply
649 (try ,@(mapcar (lambda (clause)
650 (destructuring-bind (pattern . forms)
651 clause
652 (expand-match
653 pattern obj
654 ’()
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655 (lambda ()
656 ‘(error ,object " did not match: " ’,pattern))
657 (lambda (vars)
658 ‘(,xlambda () ,@forms)))))
659 clauses))))
660 ,object))))))
661

662 (make-simple-expander
663 ;; make simple expander takes an integer (the number of expected
664 ;; subpatterns) and a function of one argument (a symbol, the
665 ;; variable bound to the object to be matched) that returns a list
666 ;; whose first element is a test form and whose remaining elements
667 ;; are accessors into an object satisfying the test form, and
668 ;; returns an expander function.
669 (lambda (arity get-test-and-parts)
670 (lambda (subpatterns object vars fail body)
671 (check
672 ((== (length subpatterns) arity)
673 (destructuring-bind (test . parts) (get-test-and-parts object)
674 ‘(check
675 ((~ ,test) ,(fail))
676 (else ,(expand-matches
677 subpatterns parts
678 vars fail body)))))))))
679 )
680

681 (define expand-match expand-match)
682 (define expand-matches expand-matches)
683

684 (define-macro match (matcher ’() ’lambda))
685 (define-macro dmatch (matcher ’(!) ’mu))
686

687 ;; A match expander is a function of two arguments, the first of which
688 ;; is a list of patterns, and the second of which is a symbol. The
689 ;; matcher must produce a list of forms, the first of which should
690 ;; return false when evaluated if the value bound to the symbol is not
691 ;; matchable by the operand. The remaining elements in the list
692 ;; should be forms that, when evaluated, produce objects that should
693 ;; be be destructured for the patterns. ‘define-match-expander’
694 ;; simplifies the constuction of match expanders.
695

696 (define-macro (define-simple-match-expander form env)
697 ;; define a simple match expander.
698 ;;
699 ;; (define-match-expander (op (pattern...) object) . body)
700 ;;
701 ;; defines an expansion function for patterns whose head is ‘op’.
702 ;; The simple match expander is a more user-friendly interface
703 ;; than the more complex ‘define-match-expander’. The ‘body’
704 ;; should produce a list of forms, the first of which should
705 ;; return true if the ‘object’ is matchable by the pattern, and
706 ;; the rest of which should produce values to be matched to as
707 ;; many patterns as are present in ‘patterns’. The actual
708 ;; patterns in a match form are not available in ‘body’, but the
709 ;; matcher defined by ‘define-simple-match-expander’ will check
710 ;; that the number of patterns in a match form is the same of the
711 ;; number of patterns provided in the definition.
712 ;;
713 ;; Example:
714 ;; (define-simple-match-expander (cons (kar kdr) kons)
715 ;; ‘((consp ,kons)
716 ;; (car ,kons)
717 ;; (cdr ,kons)))
718 (destructuring-bind (_ (op . subpatterns) (object) . body) form
719 (check
720 ((consp subpatterns)
721 (with-gensyms (%subpatterns)
722 ‘(,set-expander
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723 ’,op (,make-simple-expander
724 ,(length subpatterns)
725 (lambda (,object)
726 ,@body))))))))
727

728 (define-macro (define-match-expander form env)
729 ;; define a match expander. define-match-expander defines an
730 ;; expansion function for patterns whose head is ‘op’. Within
731 ;; the ‘body’, ‘patterns’ will be bound to a list of patterns
732 ;; that should match the parts of the object being matched.
733 ;; ‘object’ will be bound to a symbol whose that will be bound to
734 ;; the object being matched. ‘vars’ is a list of variables
735 ;; already bound in the match pattern. ‘fail’ is a function that
736 ;; will produce a form that should be taken if the match fails,
737 ;; and ‘body’ will produce the code that should be evaluated in
738 ;; the scope of any introduced bindings.
739 (destructuring-bind (_ (op subpatterns object vars fail bodyf) . body) form
740 ‘(,set-expander
741 ’,op (lambda (,subpatterns ,object ,vars ,fail ,bodyf)
742 ,@body))))
743

744 (define-macro (define-match-alias form env)
745 (destructuring-bind (_ alias original) form
746 ‘(,set-expander ’,alias (cdr (,get-expander ’,original)))))
747 )
748

749 (define-match-expander (equals %subpatterns %object %vars %fail %body)
750 (destructuring-bind (%subpattern) %subpatterns
751 ‘(check
752 ((~ (equals ,%object ,%subpattern))
753 ,(%fail))
754 (else
755 ,(%body %vars)))))
756

757 (define-match-expander (list %subpatterns %list %vars %fail %body)
758 (check
759 ;; If there is a list of patterns, match the first one against
760 ;; first element of the list, and match the rest against the
761 ;; rest.
762 ((consp %subpatterns)
763 ‘(check
764 ((~ (consp ,%list))
765 ,(%fail))
766 (else
767 ,(expand-match
768 (first %subpatterns) ‘(first ,%list)
769 %vars %fail (lambda (%vars)
770 (expand-match
771 (list* ’list (rest %subpatterns)) ‘(rest ,%list)
772 %vars %fail %body))))))
773 ;; If there are no patterns, then the object should be the empty
774 ;; list.
775 ((endp %subpatterns)
776 ‘(check
777 ((~ (endp ,%list)) ,(%fail))
778 (else ,(%body %vars))))
779 ;; If there’s something else, then got here by a dotted list
780 ;; pattern, and the whole of the remaining list should be matched
781 ;; to it.
782 (else
783 (expand-match %subpatterns %list %vars %fail %body))))
784

785 (define-match-expander (as %subpatterns %object %vars %fail %body)
786 ;; (as x pattern) binds the object as x, and also matches it into
787 ;; pattern. The usual use will have x as a variable, for holding
788 ;; a reference to the object, but both x and pattern can be
789 ;; arbitrary patterns.
790 (destructuring-bind (var pattern) %subpatterns
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791 (expand-matches (list var pattern)
792 (list %object %object)
793 %vars %fail %body)))
794

795 (define-match-expander (satisfies %subpatterns %object %vars %fail %body)
796 (destructuring-bind (test) %subpatterns
797 ‘(check
798 ((~ (,test ,%object))
799 ,(%fail))
800 (else
801 ,(%body %vars)))))
802

803 (define-macro (dcond form env)
804 (destructuring-bind (_ test dthen delse) form
805 ‘(!(cond ,test
806 (mu () ,dthen)
807 (mu () ,delse)))))
808

809 ;; Java interoperability
810

811 (define-macro (try/catch form env)
812 ;; (try/catch exp . catches) ===
813 ;; (try/catch exp ,@catches nil)
814 (destructuring-bind (t/c exp . catches) form
815 ‘(try/catch/finally
816 ,exp
817 ,@catches
818 nil)))
819

820 (define-macro (try/finally form env)
821 ;; (try/finally exp . forms) ===
822 ;; (try/finally/catch exp (progn . forms))
823 (destructuring-bind (t/f exp . forms) form
824 ‘(try/catch/finally ,exp (progn ,@forms))))
825

826 (define-macro (try form env)
827 ;; The (try ...) form is the DPL try that tries successive
828 ;; expressions until one succeeds. If the first expression throws
829 ;; an exception, then the second is tried, then the third, and so
830 ;; on until one finally works, or else if none works, an exception
831 ;; is thrown with a message to that extent,
832 (with-gensyms (e)
833 (let ((sentinel (cons nil nil)))
834 (foldr (lambda (exp more)
835 (check
836 ((== more sentinel) exp)
837 (else
838 ‘(try/catch/finally
839 ,exp
840 ((java.lang.Exception.class)
841 (lambda (,e) ,more))
842 nil))))
843 (rest form)
844 sentinel))))
845

846 (define (try-methods methods)
847 ;; Apply each of the methods in the list in turn until one
848 ;; produces an result without failing. The method applications
849 ;; are wrapped in identity calls because, according to the grammar
850 ;; of the lambda-mu calculus, the body of a lambda function must
851 ;; be an expression, and not a deduction. This precludes a
852 ;; function (lambda () (!some-method args)). However, method
853 ;; applications may be arguments to functions, so we *can* have
854 ;; ((lambda (x) x) (!some-method args)).
855 (check
856 ((endp methods)
857 (error "No methods to try"))
858 (else
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859 (try/catch/finally
860 ((lambda (x) x)
861 (!(first methods)))
862 ((java.lang.Exception.class)
863 (lambda (e)
864 (try-methods (rest methods))))
865 nil))))
866

867 (define-primitive-method (%dtry methods)
868 (try-methods methods))
869

870 (define-macro (dtry form env)
871 (destructuring-bind (_ . deductions) form
872 ‘(!%dtry
873 (list ,@(mapcar (lambda (deduction)
874 ‘(mu () ,deduction))
875 deductions)))))
876

877 (define-macro (prog1 form env)
878 (destructuring-bind (prog1 form . forms) form
879 (let ((result (gensym)))
880 ‘(let ((,result ,form))
881 ,@forms
882 ,result))))
883

884 (define-macro (prog2 form env)
885 (destructuring-bind (prog2 form1 form2 . forms) form
886 ‘(seq ,form1
887 (prog1 ,form2 ,@forms))))
888

889 ;; throwing errors
890

891 (define (error . args)
892 (throw (java.lang.RuntimeException. (apply strcat args))))
893

894 (define-primitive-method (derror . args)
895 (throw (java.lang.RuntimeException. (apply strcat args))))
896

897 (define (strcat . args)
898 ;; The java string concatenation operator should be implemented
899 ;; something like this, except that it can coaslesce constants.
900 (nlet app ((sb (java.lang.StringBuilder.))
901 (args args))
902 (check
903 ((endp args) (.toString sb))
904 (else (app (.append sb (first args))
905 (rest args))))))
906

907 ;; Comments
908

909 (define-macro (comment form env) ’nil)
910

911 ;; Arrays
912

913 (define (make-array . args)
914 (apply java.lang.reflect.Array.newInstance args))
915

916 (define (get-array array index)
917 (java.lang.reflect.Array.get array index))
918

919 (define (set-array array index object)
920 (java.lang.reflect.Array.set array index object))
921

922 ;; Java foreach
923

924 (define (%foreach-iterable fun iterable finish)
925 (let ((i (.iterator iterable)))
926 (nlet loop ()
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927 (check
928 ((~ (.hasNext i))
929 (finish))
930 (else
931 (fun (.next i))
932 (loop))))))
933

934 (define (%foreach-array fun array finish)
935 (let ((n (java.lang.reflect.Array.getLength array)))
936 (nlet loop ((i 0))
937 (check
938 ((== i n)
939 (finish))
940 (else
941 (fun (java.lang.reflect.Array.get array (.intValue i)))
942 (loop (1+ i)))))))
943

944 (define (%foreach fun thing finish)
945 (check
946 ((.isArray (.getClass thing))
947 (%foreach-array fun thing finish))
948 (else
949 (%foreach-iterable fun thing finish))))
950

951 (define-macro (foreach form env)
952 (destructuring-bind (_ (item iterable . results) . body) form
953 ‘(%foreach (lambda (,item) ,@body)
954 ,iterable
955 (lambda () nil ,@results))))
956

957 ;; timing things
958

959 (define (invoke-with-timer function)
960 (let ((begin (java.lang.System.nanoTime))
961 (result (function))
962 (end (java.lang.System.nanoTime)))
963 (.println +err+ (strcat "Evaluation required "
964 (/ (- end begin) 1000000000.0) " seconds"))
965 result))
966

967 (define-macro (time form env)
968 (destructuring-bind (_ . body) form
969 ‘(invoke-with-timer
970 (lambda () ,@body))))
971

972 (define (dinvoke-with-timer method)
973 (dlet ((begin (java.lang.System.nanoTime))
974 (result (!method))
975 (end (java.lang.System.nanoTime)))
976 (dlet ((_ (.println +err+ (strcat "Evaluation required "
977 (/ (- end begin) 1000000000.0)
978 " seconds"))))
979 (!claim result))))
980

981 (define-macro (dtime form env)
982 (destructuring-bind (_ . body) form
983 ‘(!dinvoke-with-timer
984 (mu () ,@body))))
985

986 ;; evaluator interface
987

988 (let ((+evaluator+ +evaluator+))
989 (define (boundp symbol env)
990 (cond (== env null)
991 (.boundp +evaluator+ symbol)
992 (.isBound env symbol)))
993

994 (define (makunbound symbol)
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995 (.makunbound +evaluator+ symbol))
996

997 (define (symbol-value symbol)
998 (.symbolValue +evaluator+ symbol))
999

1000 (define (macro-function symbol)
1001 (.macroFunction +evaluator+ symbol))
1002

1003 (define (macroboundp symbol)
1004 (.macroboundp +evaluator+ symbol))
1005

1006 (define (macroexpand form env)
1007 (.macroexpand +evaluator+ form env))
1008

1009 (define (macroexpand-1 form env)
1010 (.macroexpandOnce +evaluator+ form env))
1011

1012 (makunbound ’+evaluator+))
1013

1014 ;; runtime interface
1015

1016 (let ((+runtime+ +runtime+))
1017 (define (load pathname)
1018 (.load +runtime+ pathname))
1019

1020 (define (quit)
1021 ;; halt the REPL
1022 (.quit +runtime+))
1023

1024 (define (halt)
1025 ;; stop loading a file
1026 (.halt +runtime+))
1027

1028 (makunbound ’+runtime+))
1029

1030 (define-macro (when form env)
1031 (destructuring-bind (_ test . forms) form
1032 ‘(cond ,test (progn ,@forms) nil)))
1033

1034 ;; Automatically generating wrappers
1035

1036 (define (static-definitions class)
1037 ;; Returns a form that will define wrappers for all the public
1038 ;; static methods in the given class.
1039 (let* ((definitions ’())
1040 (push (lambda (x) (set definitions (list* x definitions)))))
1041 (foreach (method (.getDeclaredMethods class) ‘(progn ,@definitions nil))
1042 (let ((mmods (logand (.getModifiers method)
1043 (java.lang.reflect.Modifier.methodModifiers))))
1044 (when (&& (java.lang.reflect.Modifier.isPublic mmods)
1045 (java.lang.reflect.Modifier.isStatic mmods))
1046 (push ‘(define (,(intern (.getName method)) . args)
1047 (apply (javaDotStaticMethod
1048 ,(strcat
1049 (.getCanonicalName (.getDeclaringClass method))
1050 "." (.getName method)))
1051 args))))))))
1052

1053 (define-macro (define-static-methods form env)
1054 (destructuring-bind (_ class) form
1055 (static-definitions class)))
1056

1057 ;; claim and ab-check
1058

1059 (define (ab-check p)
1060 ;; Returns p if p is in the assumption base,
1061 ;; and throws an error otherwise
1062 (check



APPENDIX E. IMPLEMENTATION SOURCE CODE 154

1063 ((.contains (ab) p) p)
1064 (else (error p " is not in the assumption base"))))
1065

1066 (define-primitive-method (claim p)
1067 ;; Derives p if p is in the assumption base. Every DPL
1068 ;; has a claim method.
1069 (ab-check p))



Appendix F

Slate

In this chapter we discuss Slate, a software system under development for a number of years, and one of

the primary motivations for the current work in fluid logics. Slate is a argument construction environment

originally developed for intelligence analysis, and has since evolved into a robust proof construction envi-

ronment for students of formal logic. Slate is used in Rensselaer’s introductory logic courses. The present

work has not yet been applied to Slate, but Slate’s use of proof translation, particularly in implementing

automated “oracles,” is a prime candidate for application of this technology. Figure F.7 (p. 163) shows an

example where sophisticated proof translation would be a significant improvement.

F.1 History

Work on Slate began in the summer of 2003 under defense-related programs dedicated to improving

the tools available to intelligence analysts (IAs). During this period, the intelligence community (IC)

recognized an urgent need for information sharing on many levels. At the organizational level, there

were policy limitations on information sharing between intelligence agencies that presented numerous

difficulties, but even at the technological level, a lack of common representation schemata and storage

technology prevented wide-scale information sharing even when permitted by policy. Another significant

difficulty faced by the IC was understanding and documenting the reasoning of IAs that ultimately finds

expression in reports issued to policy makers. A lack of clearly defined terminology for principles of

probability and likelihood, and for documenting reasoning techniques were significant. In various research

programs and with various collaborators, Slate served as a testbed for technologies designed to address

these issues, including logical approaches culminating in “Provability-Based Semantic Interoperability”

(PBSI), natural language processing efforts for question and answer (QA) systems for intelligence analysts,

155
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and argument-mapping techniques based on non-deductive inferences incorporating strength factors.

Policy changes in the early 2000’s addressed the greater need for information sharing between

intelligence agencies, particularly with respect to terrorism related data (Office of the Director of National

Intelligence, 2008). Institution-level changes made it easier for information collected by one agency to

find its way to analysts in other agencies, often with some “scrubbing” required (e.g., protection of original

sources), but provisions for information sharing are insufficient to allow for all the desirable types of joint

reasoning. Particularly, although a number of agencies may now be permitted to share data, different

agencies have adopted as many different toolsets and knowledge representations schemata; much more

data is now, technically, available, but is not usable by anyone but its original producer.

Even in cases where the conversions needed to make one agency’s datasets usable by another, the

“scrubbing” may require that another agency uses those converted datasets in different ways. For instance,

assume agency A collected dataset D under a set of conditions C that makes D reliable and certain. A may

be willing to draw strong conclusions from this data and to make recommendations accordingly. When A

makes D available to other agencies, however, A may not be able to share the details of the conditions that

make A confident in D. Other agencies necessarily reason differently over D than A does. The metadata

that inform these kinds of considerations are sometimes available in structured form, are sometimes

available in unstructured form, and are sometimes simply unavailable.

Researchers working to develop the tools and technologies necessary for the kinds of information

sharing and joint reasoning desired faced two primary challenges:

Information Sharing Technologies must be in place to make information collected and maintained

by many different agencies available to other agencies and in a form suitable for native tools.

This requires translation of information expressed in one knowledge representation scheme to be

dynamically translated into another. Often times complete translation is impossible, and suitable

mechanisms for partial translations must be in place.

Joint Reasoning New tools must be developed that are aware of the many sources of information and

that provide suitable ways of handling information that comes from different sources, has different

provenance, and is of varying degrees of certainty, reliability, and likelihood.

RAIR Lab researchers addressed these challenges in two ways, developing new formalisms and

strategies. These developments were first realized as modifications and enhancements to Slate. The need

for information sharing led to the development of “provability-based semantic interoperability” (Shilliday

et al., 2010) using translation graphs, a framework wherein translation is implemented as proof search.

In the area of joint reasoning, Slate’s argument mapping system was augmented with strength factors and
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O1

Sorts: Person
Symbols: Child,
Sister, Brother

Sorts: Person
Symbols:
Parent, Child,
Sister, Brother

Sorts: Person
Symbols:
Sibling, Parent,
Child, Sister,
Brother

O2

Sorts: Person
Symbols:
Sibling, Parent

+Parent
∀x , y Parent(x , y)↔

Child(y, x)

+Sibling
∀x , y Sibling(x , y)↔
(Brother(x , y) ∨

Sister(x , y))

−Sister, Brother, Parent

Figure F.1: A vocabulary O1 with the terms “Child,” “Sister,” and “Brother” is gradually transformed into
one O2, containing “Sibling,” and “Parent.” An axiom is associated with each of the first two modifications.
The translation graph would be used to guide development of systems using information from O1 and O2.

other features to support the kinds of argumentation observed in intelligence analysis.

F.1.1 Provability-Based Semantic Interoperability & Translation Graphs

The main result in “provability-based semantic interoperability” (PBSI) is the use of translation graphs

in describing relationships between ontologies and their use as guides to implementing systems that

inter-operate semantically. In the PBSI approach, an ontology is a logical vocabulary in many-sorted

logic along with associated axioms governing the terms of the vocabulary. Such a view of ontology is

general enough to capture knowledge bases of traditional logic based approaches, relational databases,

and contemporary Semantic Web ontologies. Even data sources not traditionally viewed as knowledge

bases, e.g., environmental sensors, can be viewed as ontologies in this framework.

Using a small number of primitive operations, ontologies are reconstructed from an empty ontology

by gradually adding vocabulary terms and axioms. Once a number of ontologies that are to be related

have been reconstructed, the same primitive operations are used to transform the ontologies into each

other. For example, two genealogical ontologies, once reconstructed in the PBSI framework, might be

related by the translation graph shown in Figure F.1.

The term translation graph is actually misleading; although a translation graph may indicate how

information expressed under one ontology might be translated into another, in many cases complete

translation is not possible. The translation graph approach tends to make it easier to see how information

can be shared even when complete translation is not possible.

The PBSI work was developed during the ARDA-sponsored Interoperable Knowledge Representation for

Intelligence Support (IKRIS) Challenge Workshop. In the IKRIS workshop, several research groups worked

to achieve interoperability between tools developed for intelligence analysis, specifically Slate, KANI (Fikes

et al., 2005), and Noöscape (Siegel et al., 2005). This work is described in the final IKRIS report (Thurman

et al., 2006). Later work focused on interoperability between Slate and Oculus Inc.’s GeoTime geospatial

visualization system via the PBSI-based VIKRS translation services (Chappell et al., 2007; Kapler &
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Wright, 2005). The techniques of PBSI were also applied to interoperability with natural language

question and answer (QA) systems for intelligence analysis such as HITIQA (Strzalkowski et al., 2005)

and Bringsjord et al.’s (2007) Solomon.

F.1.2 Argument Mapping

With increased information availability, tools for working with massive amounts of data become of the

utmost importance. Needs commonly associated with massive datasets include visualization, organization,

provenance tracking, consistency checking, and hypothesis generation. As we examined the documents

used in training intelligence analysts (e.g., case studies such as Hughes’s (2003) Sign of the Crescent),

we recognized the great importance placed on argumentation. Argument maps in these materials were

often expressed in tree form, influenced by so called “Toulmin diagrams” (Toulmin, 2003), not unlike

arguments as presented in Slate. Common presentations lacked standard terminology for describing

certainty, reliability, and estimates of likelihood, although the IC recognized the need and was moving

toward a more consistent vocabulary (e.g., see What We Mean When We Say: An Explanation of Estimative

Language (National Intelligence Council, 2007, p. 5)). Nonetheless, these reports still make liberal

use of language expressing varying degrees of probability, certainty, and likelihood. For instance, the

CIA’s Iraqi Mobile Biological Warfare Agent Production Plants (Central Intelligence Agency, 2003) says

(emphasis added):

Analysis of the trailers reveals that they probably are . . . plants described by the source. . . .

[Plates] on the fermentors list production dates of 2002 and 2003—suggesting Iraq continued

to produce these units . . . [The] layout and equipment are consistent with information

provided . . .

Focusing our efforts on incorporating the language of certainty and likelihood into Slate arguments,

we turned to philosophical accounts of these topics as well as IC best practice (Kent), and developed an

extension to Slate based on Chisholm’s (1989) strength factors. Slate’s strength factors are described

in detail by Taylor et al. (2008), while examples of their use are given by Shilliday et al. (2007a) in

a reconstruction of the CIA’s argument regarding Iraqi biological weapons capabilities and by Clark

et al. (2007) in a reconstructed analysis of the events leading up to the 1941 attack on Pearl Harbor.

Figure F.2 shows manually assigned strength factors in a Slate argument and their propagation throughout

the structure.



APPENDIX F. SLATE 159

Figure F.2: The Slate argument structure on the left has strength factors assigned to the leaf nodes of the
argument and to inferential links. The structure on the right has the same manually assigned strength
factors, but the strength factors have been propagated through the argument. The labels on the inferential
links indicate the mode of reasoning such as Induction and Deduction.

F.2 Proof Theory

Slate is first and foremost a system for argument construction. It has been used in the construction

of non-deductive arguments (e.g., arguments using inductive or abductive inferences), but herein we

are concerned with deductive arguments in formal proof calculi. Arguments in Slate are presented in

a graphical natural deduction style similar to Gentzen-style proofs, but without the requirement that

arguments be trees. For instance, a proof of the associativity of conjunction is rendered in Slate in

Figure F.3.

The nodes in the proof graph in Figure F.3 each have the text {1 } appearing below their formula. This

indicates that they are in the scope of an assumption introduced by the formulae identified by 1. This style

of assumption tracking is used in Suppes’s (1957) classic textbook, and is particularly suitable for proofs

in Slate where much less structure is imposed on the graphical layout of a proof than in many traditional

systems. In the currently supported proof systems, Assume is the only inference rule that introduces

assumptions, but a number of rules discharge them. Figure F.4 shows assumptions being discharged by

disjunction elimination and conditional introduction. Also note the default behavior whereby the set of

in-scope assumptions of a formulae is the union of the assumptions of its premises.

This assumption tracking method has been generalized to allow proof systems to define arbitrary

attributes that may be associated with formulae in a proof. The natural deduction rules for boolean

connectives (which are shared by Slate’s proof systems for the propositional calculus, for first-order logic,

for modal logics, &c.) define the “in-scope assumptions” attribute along with default and specialized

mechanisms for computing the attribute value.

The general attribute framework has been used to implement the modal propositional logics supported
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! elim !

! intro !

! elim !

! elim !

! intro !

! elim !

1. (A ! B) ! C

{1} Assume !

2. A ! B

{1}

3. A
{1}

4. B
{1}

6. B ! C

{1}

7. A ! (B ! C)

{1}

5. C
{1}

Figure F.3: A proof of the associativity of conjunction rendered in Slate illustrates that formulae in Slate
proofs may be premises to more than one inference, in contrast to the tree structure of Gentzen-style
proofs. Though formulae have identifiers which, by default, are numeric, less linear ordering is imposed
in Slate proofs than in Fitch-style proofs.

! intro !

" elim !

" intro !" intro !

! elim !! elim !

11. (A " B) ! (C " D)

{1,2}

8. C " D

{1,4}

9. C " D

{2,6}

10. C " D

{1,2,3}

7. D

{2,6}

5. C

{1,4}

6. B

{6} Assume !

4. A

{4} Assume !

2. B ! D

{2} Assume !

1. A ! C

{1} Assume !

3. A " B

{3} Assume !

Figure F.4: In Slate, some rules, such as conditional introduction and disjunction elimination, discharge
assumptions. This stands in contrast to the default behavior where the set of in-scope assumptions of a
formula is the union of its premises’ in-scope assumptions.
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! intro !

! intro !

! elim !

! elim !

! elim !

!  intro !

" intro !

! intro !

! elim !

" intro !

1. !!P

{1} Assume !

2. !Q

{2} Assume !

3. !P

{1} 1!

8. P

{8} Assume !

5. P

{1} 2!

9. Q

{9} Assume !

12. Q " P

{8}

11. P

{8,9}

10. P ! Q

{8,9}

4. Q

{2} 1!

7. !(P ! Q)

{1,2}

6. P ! Q

{1,2} 1!

13. P " (Q " P)

#!

14. !(P " (Q " P))

#!

Figure F.5: By default, in T, a formula’s necessity count is the minimum necessity count of its premises.
Exceptions include necessity elimination which increases necessity count, necessity introduction which
decreases it, and rules that discharge assumptions which have a more complicated behavior.

by Slate, by means of a necessity-count attribute. Natural deduction proof systems for modal logics are

somewhat underrepresented in the usual literature (e.g., Chellas, 1980), but do have a long standing

history (Fitch, 1952, 1966; Siemens, 1977), and, in fact, neither is our “necessity counting” approach

without precedent (Hawthorn, 1990). As a testament to the utility of this approach to modal logics, we

observe that most familiar modal logics (including K, T, S4, and S5) all admit proof systems that use the

same set of inference rules and differ only in their default calculation of a formula’s necessity count.

Slate’s proof system for first-order logic is very similar a Gentzen-style first-order calculus. Particularly,

universal introduction requires that the name serving to identify the “arbitrary individual” in its premise

must not appear free any undischarged in-scope assumption. An analogous restriction holds for existential

elimination. The set of free names appearing within in-scope assumptions could be taken as another

attribute associated with formulae, though the first-order calculus is not actually implemented this way in

Slate. Since each formula already has its set of in-scope assumptions as an attribute, it is straightforward

to determine whether the relevant names are free in any of them on demand. Figure F.6 shows proofs

using some of the first-order rules.
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! elim !

!  intro !

" intro !

# intro !

$ intro !# intro "

" intro !

9. !y (P(y) " Q(y))

{7}

10. !y (P(y) " Q(y))

{6}

8. P(b) " Q(b)

{7}

3. P(a) $ (P(a) " Q(a))

4. #x (P(x) $ (P(x) " Q(x)))

7. P(b)

{7} Assume !

6. !x P(x)

{6} Assume !

2. P(a) " Q(a)

{1}

1. P(a)

{1} Assume !

5. #x (P(x) " Q(x))

{1}

Figure F.6: Universal introduction and existential elimination require that the relevant name (of an
arbitrary individual and of a witness, respectively) do not appear free in any undischarged assumptions of
their premise. As a consequence, the attempt to infer ∀x (P(x)∨Q(x)) from P(a)∨Q(a) fails since a
appears free in the undischarged assumption P(a).

Slate also incorporates rules that leverage automated theorem provers (e.g., McCune’s (2003) Otter

and Stickel et al.’s (1994) Snark (also see Stickel et al., 2000)) and SAT solvers and model finders (e.g.,

Claessen & Sorensson’s (2003) Paradox). Correct applications of rules that apply theorem provers can be

inspected to reveal the proof found by the theorem prover. Dually, examination of failed applications of

rules that employ model finders exposes the countermodels that satisfy the premises of the application

and the negated conclusion.

Most automated theorem provers are based on resolution rather than natural deduction (though there

are notable exceptions, e.g., see Pollock’s (1995) Oscar), and the proofs they generate are usually not

particularly enlightening to human reasoners. This problem is exacerbated by the fact that, for some

proof systems, formulae must be translated before an automated reasoner can be applied, and that the

resulting proof may not be easily ‘untranslated.’ For instance, a first-order theorem prover can be used

to prove results about propositional modal logic via the first-order encoding of Kripke-style semantics,

but the resulting first-order proofs are obviously not proofs in the propositional modal system, and the

correspondence may not be easily accessible. Figure F.7 shows a proof resulting from an application of

S5 ` which translates propositional modal formulae into first-order formula to which it applies SNARK.

The resolution-based proof in first-order logic is not likely to be at all enlightening to the casual user. It

is hoped that the present research will help in the construction of proof translations that can make the

products of automated reasoners more easily accessible.
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Figure F.7: The S5 ` rule confirms that 23(P &Q) is derivable in S5 from 22P and 3Q, but the resolution
refutation based on the first-order encoding of the Kripke-style semantics of S5 is hardly enlightening.

For a more complete summary of the proof systems available in Slate, including their particular syntax,

inference rules, and the details of assumption tracking and necessity counting, the reader is directed to

Getting Started with Slate (Taylor et al., 2010), a guide originally prepared for students using Slate in

Rensselaer’s introductory logic course, or Bringsjord & Taylor’s (2014) textbook in preparation, Logic: A

Modern Approach.
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